Skip to main content

Grain Quality

  • Chapter
  • First Online:
Book cover Genetics and Genomics of Rice

Abstract

With the improvement of people’s living conditions, the goal of rice breeding is no longer limited to increased yield, but can also be extended to produce grain with high quality. Considering that starch is the predominant component in dehulled rice grain, researchers worldwide have tried to understand the relationship between starch biosynthesis and grain quality. So far, a preliminary understanding of the regulatory processes controlling grain eating and cooking quality (ECQ) traits has been obtained by positional cloning and analysis of single genes, and genome-wide association and co-expression studies. In addition, several genes for grain shape have also been cloned by QTL mapping, some of which have been applied to improve yield and quality in rice. The increased understanding of processes in starch biosynthesis and grain shape formation by identifying of grain quality determinant in rice should be useful for us to produce high-quality rice in future via MAS and bioengineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He P, Li SG, Qian Q, Ma YQ, Li JZ (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508

    Article  CAS  Google Scholar 

  2. Sun MM, Abdula SE, Lee HJ et al (2011) Molecular aspect of good eating quality formation in japonica rice. PLoS One 6(4):e18385

    Article  PubMed  CAS  Google Scholar 

  3. Terada R, Nakajima M, Isshiki M, Okagaki RJ, Wessler SR, Shimamoto K (2000) Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant Cell Physiol 41(7):881–888

    Article  PubMed  CAS  Google Scholar 

  4. Itoh K, Ozaki H, Okada K, Hori H, Takeda Y, Mitsui T (2003) Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant Cell Physiol 44(5):473–480

    Article  PubMed  CAS  Google Scholar 

  5. Su Y, Rao Y, Hu S et al (2011) Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theor Appl Genet 123(5):859–867

    Article  PubMed  Google Scholar 

  6. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang Q (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110(8):1445–1452

    Article  PubMed  CAS  Google Scholar 

  7. Tian Z, Qian Q, Liu Q et al (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A 106(51):21760–21765

    Article  PubMed  CAS  Google Scholar 

  8. Takeda Y, Hizukuri S, Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168(1):79–88

    Article  CAS  Google Scholar 

  9. Kumar I, Khush GS (1988) Inheritance of amylose content in rice (Oryza sativa L.). Euphytica 38:261–269

    Article  CAS  Google Scholar 

  10. Bao J (2007) Progress in studies on inheritance and improvement of rice starch quality. Mol Plant Breed 5(6):1–20

    CAS  Google Scholar 

  11. Tang SX, Khush GS, Juliano BO (1991) Genetics of gel consistency in rice (Oryza sativa L.). J Genet 70(2):69–78

    Article  Google Scholar 

  12. Gao Z, Zeng D, Cui X et al (2003) Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China C Life Sci 46(6):661–668

    Article  PubMed  CAS  Google Scholar 

  13. Gu MH, Liu QQ, Yan CJ, Tang SZ (2010) Grain quality of hybrid rice: genetic variation and molecular improvement. In: Xie F, Hardy B (eds) Accelerating hybrid rice development, Los Banos (Philippines): International Rice Research Institute, p 345–356

    Google Scholar 

  14. Williams V, Wu W, Tsai H, Bates H (1958) Varietial differences in amylose content of rice starch. J Agric Food Chem 6:47–48

    Article  CAS  Google Scholar 

  15. Kumar I, Khush GS, Juliano BO (1987) Genetic analysis of waxy locus in rice. Theor Appl Genet 73:481–488

    Article  CAS  Google Scholar 

  16. Kumar I, Khush IS (1986) Genetics of amylose content in rice. J Genet 65:1–11

    Article  CAS  Google Scholar 

  17. Mckenzie KS, Rutger JN (1983) Genetic analysis of amylose content, alkali spreading score, and grain dimension in rice. Crop Sci 23:306–313

    Article  CAS  Google Scholar 

  18. Bollich C, Webb B (1973) Inheritance of amylose in two hybrid populations of rice. Cereal Chem 50:631–636

    Google Scholar 

  19. Chang W, Li W (1981) Inheritance of amylose content and gel consistency in rice. Bot Bull Acad Sin 22:35–47

    CAS  Google Scholar 

  20. Huang C, Li R (1990) The genetic analysis of amylose content of rice (Oryza sativa L.). J South China Agric Univ 11(1):23–29

    Article  Google Scholar 

  21. Shen Y, Min S, Xiong Z, Luo Y (1990) Genetical studies on amylose content of rice grain and modifies on the determination method. Sci Agric Sin 23(1):60–68

    Google Scholar 

  22. Wang ZY, Wu ZL, Xing YY et al (1990) Nucleotide sequence of rice waxy gene. Nucleic Acids Res 18(19):5898

    Article  PubMed  CAS  Google Scholar 

  23. Sprague GF, Brimhall B, Hoxon RMB (1943) Some effects of the waxy gene in corn on properties of endosperm starch. J Am Soc Agron 35:817–822

    Article  Google Scholar 

  24. Wang ZY, Zheng FQ, Shen GZ et al (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7(4):613–622

    Article  PubMed  CAS  Google Scholar 

  25. Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid Shanyou 63. Theor Appl Genet 99:642–648

    Article  PubMed  CAS  Google Scholar 

  26. Lanceras JC, Huang ZL, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S (2000) Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res 7(2):93–101

    Article  PubMed  CAS  Google Scholar 

  27. Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1433–1441

    Article  PubMed  CAS  Google Scholar 

  28. Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima. Theor Appl Genet 109(3):630–639

    Article  PubMed  CAS  Google Scholar 

  29. Tian R, Jiang G-H, Shen L-H, Wang L-Q, He Y-Q (2005) Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breed 15:117–124

    Article  CAS  Google Scholar 

  30. Lapitan VC, Redona ED, Abe T, Brar DS (2009) Mapping of quantitative trait loci using a doubled-haploid population from the cross of India and japonica cultivars of rice. Crop Sci 49:1619–1628

    Article  CAS  Google Scholar 

  31. He Y, Han Y, Jiang L, Xu C, Lu J, Xu M (2006) Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol Breed 18:277–290

    Article  CAS  Google Scholar 

  32. Bao JS, Wu YR, Hu B, Wu P, Cui HR, Shu QY (2002) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica 128:317–324

    Article  CAS  Google Scholar 

  33. Li J, Xiao J, Grandillo S et al (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47(4):697–704

    Article  PubMed  CAS  Google Scholar 

  34. Wan XY, Wan JM, Su CC et al (2004) QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet 110(1):71–79

    Article  PubMed  CAS  Google Scholar 

  35. Nelson OE, Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9:297–300

    Article  PubMed  CAS  Google Scholar 

  36. Konishi Y, Nojima H, Okuno K, Asaoka M, Fuwa H (1985) Characterization of starch granules from waxy, non-waxy and hybrid seeds of Amaranths hypochrandriaces L. Agric Biol Chem 49:1965–1971

    Article  CAS  Google Scholar 

  37. Sano Y (1984) Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet 68:467–473

    Article  CAS  Google Scholar 

  38. Hseih JS (1988) Genetic studies on the Wx gene of sorghum. 1. Examination of the protein product of the waxy locus. Bot Bull Acad Sin 29:293–299

    Google Scholar 

  39. Ainsworth CC, Gale MD, Baird S (1983) The genetics of B amylase isozymes in wheat. I. Altelic variation among hexaploid varieties and intrachromosomal genelocations. Theor Appl Genet 66:39–49

    Article  CAS  Google Scholar 

  40. Hovenkamp-Hermelink JHM, Jacobsen E, Ponstein AS et al (1987) Isolation of an amylose-free mutant of potato (Solanum tuberoum). Theor Appl Genet 75:217–221

    Article  Google Scholar 

  41. Rohde W, Becker D, Salamini F (1988) Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Res 16(14B):7185–7186

    Article  PubMed  CAS  Google Scholar 

  42. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35(1):225–233

    Article  PubMed  CAS  Google Scholar 

  43. Okagaki RJ, Wessler SR (1988) Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics 120(4):1137–1143

    PubMed  CAS  Google Scholar 

  44. Okagaki RJ (1992) Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol 19(3):513–516

    Article  PubMed  CAS  Google Scholar 

  45. Yan L, Bhave M (2000) Sequences of the waxy loci of wheat: utility in analysis of waxy proteins and developing molecular markers. Biochem Genet 38(11–12):391–411

    Article  PubMed  CAS  Google Scholar 

  46. Isshiki M, Morino K, Nakajima M et al (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15(1):133–138

    Article  PubMed  CAS  Google Scholar 

  47. Satoh H, Omura T (1981) New endosperm mutations induced by chemical mutagen in rice, Oryza sativa L. Jpn J Breed 31:316–326

    CAS  Google Scholar 

  48. Sano Y, Maekawa M, Kikuchi H (1985) Temperature effects on the Wx protein level an amylose content in the endosperm of rice. J Hered 76:221–223

    CAS  Google Scholar 

  49. Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol 65(4):501–509

    Article  PubMed  CAS  Google Scholar 

  50. Makarov EM, Makarova OV, Achsel T, Luhrmann R (2000) The human homologue of the yeast splicing factor prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J Mol Biol 298(4):567–575

    Article  PubMed  CAS  Google Scholar 

  51. Fu FF, Xue HW (2010) Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154(2):927–938

    Article  PubMed  CAS  Google Scholar 

  52. Zhu Y, Cai XL, Wang ZY, Hong MM (2003) An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem 278(48):47803–47811

    Article  PubMed  CAS  Google Scholar 

  53. Tang S (1993) Inheritance of gel consistency in indica rice(Oryza sativa L.). Acta Agron Sin 19(2):119–124

    Google Scholar 

  54. Tang S, Zhang K, Yu H (1996) Genetics of gel consistency in the crosses between indica and japonica rices. Sci Agric Sin 29(5):51–55

    Google Scholar 

  55. Zaman FU, Siddiq EA, Prasad AB (1985) Genetical analysis of gel consistency in rice. Indian J Genet Plant Breed 45(1):111–118

    Google Scholar 

  56. Yi X, Chen F (1992) Genetical effect of different cytoplasms on rice cooking, milling and nutrient qualities in indica type hybrid rice. Chin J Rice Sci 4:187–189

    Google Scholar 

  57. Zheng X, Wu JG, Lou XY, Xu HM, Shi CH (2008) The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.). Theor Appl Genet 116(3):335–342

    Article  PubMed  CAS  Google Scholar 

  58. Victoria CL, Edilberto DR, Toshinori A, Darshan SB (2009) Mapping of quantitative trait loci using a doubled-haploid population from the cross of India and japonica cultivars of rice. Crop Sci 49:1619–1628

    Google Scholar 

  59. Gao Z, Zeng D, Cheng F et al (2011) ALK, the key gene for gelaterization temperature, is a modifier gene for gel consistency in rice. J Integr Plant Biol 53(9):756–765

    PubMed  CAS  Google Scholar 

  60. Faruq G, Hadjim MO, Meisner CA (2004) Inheritance of gelatinization temperature in rice. Int J Agri Biol 6(5):810–812

    Google Scholar 

  61. Puri RP, Siddiq EA (1980) Inheritance of gelatinization temperature in rice. Indian J Genet Plant Breed 40(2):450–455

    Google Scholar 

  62. Wang C, Gao R, Tang Y (1996) Genetic analysis of gelatinization temperature of indica type hybrid rice. Acta Univ Agric Boreali-occidentalis 24(1):28–32

    Google Scholar 

  63. Jennings P, Coffman W, Kauffman H (1979) Rice improvement. International Rice Research Institute, Los Banos, p 186

    Google Scholar 

  64. Lin SY, Nagamura Y, Kurata N et al (1994) DNA markers tightly linked to genes, Ph, alk and Rc. Rice Genet Newsl 11:108

    Google Scholar 

  65. Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet 104(1):1–8

    Article  PubMed  CAS  Google Scholar 

  66. Nakamura Y, Francisco PB Jr, Hosaka Y et al (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58(2):213–227

    Article  PubMed  CAS  Google Scholar 

  67. Pooni H, Kumar I, Khush I (1992) A comprehensive model for disomically inherited metrical traits expressed in triploid tissues. Heredity 69:166–174

    Article  Google Scholar 

  68. Zhu J, Weir B (1994) Analysis of cytoplasmic and maternal effects II. Genetic models for triploid endosperm. Theor Appl Genet 89:160–166

    Google Scholar 

  69. Huang F, Sun Z, Hu P, Tang S (1998) Present situations and prospect for the research on rice grain quality forming. Chin J Rice Sci 12(3):172–176

    Google Scholar 

  70. Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  PubMed  CAS  Google Scholar 

  71. Fujita N, Kubo A, Suh DS et al (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44(6):607–618

    Article  PubMed  CAS  Google Scholar 

  72. Denyer K, Clarke B, Hylton C, Tatge H, Smith AM (1996) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10(6):1135–1143

    Article  CAS  Google Scholar 

  73. Hanashiro I, Itoh K, Kuratomi Y et al (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49(6):925–933

    Article  PubMed  CAS  Google Scholar 

  74. Fujita N, Yoshida M, Asakura N et al (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140(3):1070–1084

    Article  PubMed  CAS  Google Scholar 

  75. Fujita N, Yoshida M, Kondo T et al (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144(4):2009–2023

    Article  PubMed  CAS  Google Scholar 

  76. Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127(2):459–472

    Article  PubMed  CAS  Google Scholar 

  77. Satoh H, Nishi A, Yamashita K et al (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133(3):1111–1121

    Article  PubMed  CAS  Google Scholar 

  78. Li QF, Zhang GY, Dong ZW et al (2009) Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Biochem 47(5):351–358

    Article  PubMed  CAS  Google Scholar 

  79. Ryoo N, Yu C, Park CS et al (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26(7):1083–1095

    Article  PubMed  CAS  Google Scholar 

  80. Fujita N, Satoh R, Hayashi A et al (2011) Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J Exp Bot 62(14):4819–4831

    Article  PubMed  CAS  Google Scholar 

  81. Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121(2):399–410

    Article  PubMed  CAS  Google Scholar 

  82. Wong K, Kubo A, Jane J, Harada K, Satoh H, Nakamura Y (2003) Structures and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J Cereal Sci 37(2):139–149

    Article  CAS  Google Scholar 

  83. Fujita N, Toyosawa Y, Utsumi Y et al (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60(3):1009–1023

    Article  PubMed  CAS  Google Scholar 

  84. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, a elite rice hybrid. Theor Appl Genet 101:823–829

    Article  CAS  Google Scholar 

  85. Qi Z, Li B, Yang W, Wu X (1983) A study on the genetic of exterior quality and fat of the rice grains. Acta Genet Sin 10(6):452–458

    Google Scholar 

  86. Shi C, Shen Z (1995) Inheritance and improvement of grain shape in indica rice. Chin J Rice Sci 9(1):27–32

    Google Scholar 

  87. Zhou Q, An H, Zhang Y, Shen F (2000) Study on heridity of morphological characters of rice grain. J Southwest Agric Univ 22(2):102–104

    Google Scholar 

  88. Peng X, Zou X, He H et al (2005) Analysis of genetics and correlation on grain characters in two-line hybrid rice. Hybrid Rice 20(3):60–63

    Google Scholar 

  89. Wu C (2002) Headways of quality heredity studding and discuss of improvement strategy in rice (Oryza sativa L.). Chin Agric Sci Bull 18(6):66–71

    Google Scholar 

  90. Xu C, Mo H, Zhang A, Zhu Q (1995) Genetical control of quality traits of rice grains in indica-japonica hybrid. Acta Genet Sin 22(3):192–198

    Google Scholar 

  91. Zhang A, Xu C, Mo H (1999) Genetic expression of several quality traits in indica-japonica hybrids. Acta Agron Sin 25(4):401–407

    Google Scholar 

  92. Min C, Zhao A (1983) Diallel analysis of grain weight and shape in F1 of indica rice hybridization. Sci Agric Sin 5:14–20

    Google Scholar 

  93. Takite T (1989) Breeding for grain shape in rice. J Agri Sci 44(6):39–42

    Google Scholar 

  94. Gui S, Yan K (1984) The primary study on the inheritance of giant grain in rice. Yunnan Agri Sci and Tech 1:2–5

    Google Scholar 

  95. Liu Y (2001) Genetic analysis of grain traits and gene mapping of grain length in rice. Master Thesis, Sichuan Agricultural University

    Google Scholar 

  96. Zhang Z (2008) Mapping of major QTL for grain shape and weight traits in rice (Oryza sativa L.). Master Thesis, Xiamen University

    Google Scholar 

  97. Guo L, Ma L, Jiang H et al (2009) Genetic analysis and fine mapping of two genes for grain shape and weight in rice. J Integr Plant Biol 51(1):45–51

    Article  PubMed  CAS  Google Scholar 

  98. Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133(3):1083–1090

    Article  PubMed  CAS  Google Scholar 

  99. Lin H, Min S, Xiong Z et al (1995) RFLP mapping of QTLs for grain shape traits in indica rice. Sci Agric Sin 28(4):1–7

    Google Scholar 

  100. Redona ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963

    Article  CAS  Google Scholar 

  101. Shomura A, Izawa T, Ebana K et al (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    Article  PubMed  CAS  Google Scholar 

  102. Wan XY, Wan JM, Jiang L et al (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112(7):1258–1270

    Article  PubMed  CAS  Google Scholar 

  103. Wan XY, Wan JM, Weng JF et al (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110(7):1334–1346

    Article  PubMed  CAS  Google Scholar 

  104. Huang N, Parco A, Mew T et al (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown plant hopper resistance in a doubled haploid rice population. Mol Breed 3:105–113

    Article  CAS  Google Scholar 

  105. Takeda K, Saito K (1980) Major genes controlling grain size in Japan. Jpn J Breed 30:280–282

    Google Scholar 

  106. Takamure I, Kinoshita T (1991) Linkage analysis in chromosomes 3 and 6. Rice Genet Newsl 8:98–100

    Google Scholar 

  107. Xing Y, Tan Y, Xu C, Hua J, Sun X (2001) Mappng quantitative trait loci for grain apperance traits of rice using a recombinant inbred line population. Acta Bot Sin 43(8):800–845

    Google Scholar 

  108. Kubo T, Takano KN, Yoshimura A (2001) RFLP mapping of genes for long kernel and awn on chromosome 3 in Rice. Rice Genet Newsl 18:26–28

    CAS  Google Scholar 

  109. Thomson MJ, Tai TH, McClung AM et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493

    Article  PubMed  CAS  Google Scholar 

  110. Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168(4):2187–2195

    Article  PubMed  CAS  Google Scholar 

  111. Xie X, Song MH, Jin F et al (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113(5):885–894

    Article  PubMed  CAS  Google Scholar 

  112. Mao H, Sun S, Yao J et al (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584

    Article  PubMed  CAS  Google Scholar 

  113. Fan C, Xing Y, Mao H et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171

    Article  PubMed  CAS  Google Scholar 

  114. Zhou LQ, Wang YP, Li SG (2006) Genetic analysis and physical mapping of Lk-4(t), a major gene controlling grain length in rice, with a BC2F2 population. Yi Chuan Xue Bao 33(1):72–79

    PubMed  CAS  Google Scholar 

  115. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630

    Article  PubMed  CAS  Google Scholar 

  116. Weng J, Gu S, Wan X et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12):1199–1209

    Article  PubMed  CAS  Google Scholar 

  117. Li Y, Fan C, Xing Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269

    Article  PubMed  CAS  Google Scholar 

  118. Wang S, Wu K, Yuan Q et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954

    Article  PubMed  CAS  Google Scholar 

  119. Cho Y, Suh J, Choi I et al (2003) QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treat Crop Res Korea 4:19–29

    Google Scholar 

  120. Wang W, Zhao Q, Yu J, Zhu D (2004) Advances in the study on the improving nutritional quality of rice. China Biotech 24(5):30–33

    Google Scholar 

  121. Ye X, Al-Babili S, Kloti A et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  PubMed  CAS  Google Scholar 

  122. Zheng Z, Sumi K, Tanaka K, Murai N (1995) The bean seed storage protein [beta]-phaseolin is synthesized, processed, and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiol 109(3):777–786

    PubMed  CAS  Google Scholar 

  123. Momma K, Hashimoto W, Ozawa S et al (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: analyses of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63(2):314–318

    Article  PubMed  CAS  Google Scholar 

  124. Song J, Le M, Fu G, Wang X, Tao L (2011) The progress of molecular basis of high temeprature on rice grain quality. China Rice 15(6):8–14

    CAS  Google Scholar 

  125. Li H, Chen Z, Hu M et al (2011) Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep 30(9):1641–1659

    Article  PubMed  CAS  Google Scholar 

  126. Teng Z, ZHI L, Zong X, Wang S, He G (2008) Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agron Sin 34(9):1662–1666

    Article  CAS  Google Scholar 

  127. Li T, Liu Q, Ohsugi R, Yamagishi T, Sasaki H (2006) Effect of high temperature on sucrose content and sucrose-cleaving enzymes activity in rice during grain filling stage. Chin J Rice Sci 20(6):626–630

    CAS  Google Scholar 

  128. Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27):9971–9975

    Article  PubMed  CAS  Google Scholar 

  129. Wei K, Zhang Q, Cheng F, Chen N, Xie L (2009) Expression profiles of rice soluble starch synthase (SSS) genes in response to high temperature stress at filling stage. Chin J Rice Sci 35(1):18–24

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (2011CB100201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayang Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, Y., Wing, R.A., Li, J. (2013). Grain Quality. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_16

Download citation

Publish with us

Policies and ethics