Skip to main content

A Study of Cancer Heterogeneity: From Genetic Instability to Epigenetic Diversity in Colorectal Cancer

  • Chapter
  • First Online:
Book cover Cancer Targeted Drug Delivery

Abstract

Cancer is the leading cause of death worldwide. Despite improvements in diagnosis and treatment over the past two decades, cancer continues to present a serious challenge to oncologists, especially when the disease has already spread to a distant site at the time of diagnosis. The high degree of variation in gene expression, observed not only in tumors arising from different tissues but also in tumors arising from the same tissue, and sometimes in distinct areas of the same tumor, is likely to be responsible for evolutionary adaptation and consequently tumor survival.

Cellular heterogeneity has historically been viewed solely as the result of genetic instability. However, it has now become increasingly clear that changes in gene expression that occur without altering the DNA sequence—better known as epigenetic changes—can likewise contribute to tumorigenesis. Elucidating the mechanisms that account for cancer heterogeneity will be essential to the design of new drugs capable of overcoming the major limitations of current therapies. These limitations include the treatment of cancers able to escape immune surveillance or adapt to chemotherapy regimens as well as invasive and metastatic cancers.

Here, we review recent progress in the understanding of tumor genetics and epigenetics and translate these findings into potential clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volpe JP (1988) Genetic instability of cancer. Why a metastatic tumor is unstable and a benign tumor is stable. Cancer Genet Cytogenet 34(1):125–134

    CAS  PubMed  Google Scholar 

  2. Berman JJ (2008) The mystery of tumor diversity and of type-specific tumor uniformity. Neoplasms: Principles of Development and Diversity, Jones and Bartlett publishers, Sudbury, MA, p 42–50

    Google Scholar 

  3. Boveri T (2008) Concerning the origin of malignant tumours by theodor boveri. Translated and annotated by henry harris. J Cell Sci 121(Suppl 1):1–84

    PubMed  Google Scholar 

  4. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    CAS  PubMed  Google Scholar 

  5. Lasko D, Cavenee W, Nordenskjold M (1991) Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 25:281–314

    CAS  PubMed  Google Scholar 

  6. Hopman AH, Moesker O, Smeets AW, Pauwels RP, Vooijs GP, Ramaekers FC (1991) Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 51(2):644–651

    CAS  PubMed  Google Scholar 

  7. Alers JC, Krijtenburg PJ, Rosenberg C, Hop WC, Verkerk AM, Schroder FH, van der Kwast TH, Bosman FT, van Dekken H (1997) Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone. Lab invest 77(5):437–448

    CAS  PubMed  Google Scholar 

  8. Placer J, Espinet B, Salido M, Sole F, Gelabert-Mas A (2005) Correlation between histologic findings and cytogenetic abnormalities in bladder carcinoma: a fish study. Urology 65(5):913–918

    PubMed  Google Scholar 

  9. Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1(2):109–117

    CAS  PubMed  Google Scholar 

  10. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    CAS  PubMed  Google Scholar 

  11. Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437(7061):1038–1042

    CAS  PubMed  Google Scholar 

  12. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    CAS  PubMed  Google Scholar 

  13. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274(5293):1664–1672

    CAS  PubMed  Google Scholar 

  14. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51(23 Pt 1):6304–6311

    CAS  PubMed  Google Scholar 

  15. Bischoff FZ, Yim SO, Pathak S, Grant G, Siciliano MJ, Giovanella BC, Strong LC, Tainsky MA (1990) Spontaneous abnormalities in normal fibroblasts from patients with li-fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res 50(24):7979–7984

    CAS  PubMed  Google Scholar 

  16. Bouffler SD, Kemp CJ, Balmain A, Cox R (1995) Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res 55(17):3883–3889

    CAS  PubMed  Google Scholar 

  17. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271(5256):1744–1747

    CAS  PubMed  Google Scholar 

  18. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70(6):937–948

    CAS  PubMed  Google Scholar 

  19. Havre PA, Yuan J, Hedrick L, Cho KR, Glazer PM (1995) P53 inactivation by hpv16 e6 results in increased mutagenesis in human cells. Cancer Res 55(19):4420–4424

    CAS  PubMed  Google Scholar 

  20. Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN (1997) Inactivation of p53 results in high rates of homologous recombination. Oncogene 14(15):1847–1857

    CAS  PubMed  Google Scholar 

  21. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231

    CAS  PubMed  Google Scholar 

  22. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of cdk2-cyclin e activity for repeated centrosome reproduction in xenopus egg extracts. Science 283(5403):851–854

    CAS  PubMed  Google Scholar 

  23. Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG Jr (1996) Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol 16(12):6623–6633

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hu YX, Watanabe H, Ohtsubo K, Yamaguchi Y, Ha A, Motoo Y, Okai T, Sawabu N (1998) Infrequent expression of p21 is related to altered p53 protein in pancreatic carcinoma. Clin Cancer Res 4(5):1147–1152

    CAS  PubMed  Google Scholar 

  25. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez Mdel C, Barrios M, Maldonado J, Torres A (2002) 5′ cpg island hypermethylation is associated with transcriptional silencing of the p21(cip1/waf1/sdi1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99(7):2291–2296

    CAS  PubMed  Google Scholar 

  26. Cervantes RB, Lundblad V (2002) Mechanisms of chromosome-end protection. Curr Opin Cell Biol 14(3):351–356

    CAS  PubMed  Google Scholar 

  27. Maser RS, DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297(5581):565–569

    CAS  PubMed  Google Scholar 

  28. Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8(6):450–458

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Rampazzo E, Bertorelle R, Serra L, Terrin L, Candiotto C, Pucciarelli S, Del Bianco P, Nitti D, De Rossi A (2010) Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer 102(8):1300–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang A, Wang J, Zheng B, Fang X, Angstrom T, Liu C, Li X, Erlandsson F, Bjorkholm M, Nordenskjord M, Gruber A, Wallin KL, Xu D (2004) Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene 23(44):7441–7447

    CAS  PubMed  Google Scholar 

  31. Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S, Fegan C, Pepper C, Baird DM (2010) Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 116(11):1899–1907

    CAS  PubMed  Google Scholar 

  32. Butler DK, Yasuda LE, Yao MC (1996) Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 87(6):1115–1122

    CAS  PubMed  Google Scholar 

  33. Chakraborty S, Stark JM, Sun CL, Modi H, Chen W, O’Connor TR, Forman SJ, Bhatia S, Bhatia R (2012) Chronic myelogenous leukemia stem and progenitor cells demonstrate chromosomal instability related to repeated breakage-fusion-bridge cycles mediated by non-homologous end joining. Blood 119(26):6187–6197

    CAS  PubMed  Google Scholar 

  34. Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O’Brien S, Garcia-Manero G, Giles F, Breeden M, Reeves N, Wierda WG, Jones D (2007) Dynamics of bcr-abl kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110(12):4005–4011

    CAS  PubMed  Google Scholar 

  35. Hede K (2005) Which came first? Studies clarify role of aneuploidy in cancer. J Natl Cancer Inst 97(2):87–89

    PubMed  Google Scholar 

  36. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11(1):25–36

    CAS  PubMed  Google Scholar 

  37. Sheltzer JM, Amon A (2011) The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 27(11):446–453

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, Finegold MJ, Grompe M (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467(7316):707–710

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Modrich P (1997) Strand-specific mismatch repair in mammalian cells. J Biol Chem 272(40):24727–24730

    CAS  PubMed  Google Scholar 

  40. Duckett DR, Drummond JT, Murchie AI, Reardon JT, Sancar A, Lilley DM, Modrich P (1996) Human mutsalpha recognizes damaged DNA base pairs containing o6-methylguanine, o4-methylthymine, or the cisplatin-d(gpg) adduct. Proc Natl Acad Sci USA 93(13):6443–6447

    CAS  PubMed  Google Scholar 

  41. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561

    CAS  PubMed  Google Scholar 

  42. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog msh2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    CAS  PubMed  Google Scholar 

  43. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al (1993) Mutations of a muts homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225

    CAS  PubMed  Google Scholar 

  44. Papadopoulos N, Lindblom A (1997) Molecular basis of hnpcc: mutations of mmr genes. Hum Mutat 10(2):89–99

    CAS  PubMed  Google Scholar 

  45. Peltomaki P, de la Chapelle A (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv Cancer Res 71:93–119

    CAS  PubMed  Google Scholar 

  46. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hmlh1 promoter correlates with lack of expression of hmlh1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57(5):808–811

    CAS  PubMed  Google Scholar 

  47. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hmlh1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    CAS  PubMed  Google Scholar 

  48. Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopolous N, Peltomaki P, de la Chapelle A, Hamilton SR et al (1995) Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 9(1):48–55

    CAS  PubMed  Google Scholar 

  49. Borresen AL, Lothe RA, Meling GI, Lystad S, Morrison P, Lipford J, Kane MF, Rognum TO, Kolodner RD (1995) Somatic mutations in the hmsh2 gene in microsatellite unstable colorectal carcinomas. Hum Mol Genet 4(11):2065–2072

    CAS  PubMed  Google Scholar 

  50. Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH (1996) Microsatellite instability and the role of hmsh2 in sporadic colorectalcancer. Oncogene 12(12):2641–2649

    CAS  PubMed  Google Scholar 

  51. Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM, Moslein G, Baker SM, Liskay RM, Burgart LJ, Honchel R, Halling KC (1996) Altered expression of hmsh2 and hmlh1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56(21):4836–4840

    CAS  PubMed  Google Scholar 

  52. Wu Y, Nystrom-Lahti M, Osinga J, Looman MW, Peltomaki P, Aaltonen LA, de la Chapelle A, Hofstra RM, Buys CH (1997) Msh2 and mlh1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer 18(4):269–278

    CAS  PubMed  Google Scholar 

  53. Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, Carethers JM, Dowell JM, Wasserman L, Compton C, Mayer RJ, Bertagnolli MM, Boland CR (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63(7):1608–1614

    CAS  PubMed  Google Scholar 

  54. Camps J, Morales C, Prat E, Ribas M, Capella G, Egozcue J, Peinado MA, Miro R (2004) Genetic evolution in colon cancer km12 cells and metastatic derivates. Int J Cancer 110(6):869–874

    CAS  PubMed  Google Scholar 

  55. Henikoff S, Matzke MA (1997) Exploring and explaining epigenetic effects. Trends Genet 13(8):293–295

    CAS  PubMed  Google Scholar 

  56. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486

    CAS  PubMed  Google Scholar 

  57. Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    PubMed  Google Scholar 

  58. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  59. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Gardiner-Garden M, Frommer M (1987) Cpg islands in vertebrate genomes. J Mol Biol 196(2):261–282

    CAS  PubMed  Google Scholar 

  61. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    CAS  PubMed  Google Scholar 

  62. Feil R, Khosla S (1999) Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet 15(11):431–435

    CAS  PubMed  Google Scholar 

  63. Panning B, Jaenisch R (1998) Rna and the epigenetic regulation of x chromosome inactivation. Cell 93(3):305–308

    CAS  PubMed  Google Scholar 

  64. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    CAS  PubMed  Google Scholar 

  65. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    CAS  PubMed  Google Scholar 

  66. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167

    CAS  PubMed  Google Scholar 

  67. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711

    CAS  PubMed  Google Scholar 

  68. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the pou transcription factor oct4. Cell 95(3):379–391

    CAS  PubMed  Google Scholar 

  69. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    CAS  PubMed  Google Scholar 

  70. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and es cells. Cell 113(5):631–642

    CAS  PubMed  Google Scholar 

  71. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K (2004) Epigenetic control of mouse oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279(17):17063–17069

    CAS  PubMed  Google Scholar 

  73. Yeo S, Jeong S, Kim J, Han JS, Han YM, Kang YK (2007) Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun 359(3):536–542

    CAS  PubMed  Google Scholar 

  74. Guo Y, Liu S, Wang P, Zhao S, Wang F, Bing L, Zhang Y, Ling EA, Gao J, Hao A (2011) Expression profile of embryonic stem cell-associated genes oct4, sox2 and nanog in human gliomas. Histopathology 59(4):763–775

    PubMed  Google Scholar 

  75. Li Y, Laterra J (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72(3):576–580

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228(4696):187–190

    CAS  PubMed  Google Scholar 

  78. Bedford MT, van Helden PD (1987) Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res 47(20):5274–5276

    CAS  PubMed  Google Scholar 

  79. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48(5):1159–1161

    CAS  PubMed  Google Scholar 

  80. Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74(3):893–899

    CAS  PubMed  Google Scholar 

  81. Cravo M, Pinto R, Fidalgo P, Chaves P, Gloria L, Nobre-Leitao C, Costa Mira F (1996) Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut 39(3):434–438

    CAS  PubMed  Google Scholar 

  82. Bernardino J, Roux C, Almeida A, Vogt N, Gibaud A, Gerbault-Seureau M, Magdelenat H, Bourgeois CA, Malfoy B, Dutrillaux B (1997) DNA hypomethylation in breast cancer: an independent parameter of tumor progression? Cancer Genet Cytogenet 97(2):83–89

    CAS  PubMed  Google Scholar 

  83. Shen L, Fang J, Qiu D, Zhang T, Yang J, Chen S, Xiao S (1998) Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepatogastroenterology 45(23):1753–1759

    CAS  PubMed  Google Scholar 

  84. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39(3):166–174

    CAS  PubMed  Google Scholar 

  85. Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61(10):4238–4243

    CAS  PubMed  Google Scholar 

  86. Soares J, Pinto AE, Cunha CV, Andre S, Barao I, Sousa JM, Cravo M (1999) Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer 85(1):112–118

    CAS  PubMed  Google Scholar 

  87. Widschwendter M, Jiang G, Woods C, Muller HM, Fiegl H, Goebel G, Marth C, Muller-Holzner E, Zeimet AG, Laird PW, Ehrlich M (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64(13):4472–4480

    CAS  PubMed  Google Scholar 

  88. Yang B, Sun H, Lin W, Hou W, Li H, Zhang L, Li F, Gu Y, Song Y, Li Q, Zhang F (2011) Evaluation of global DNA hypomethylation in human prostate cancer and prostatic intraepithelial neoplasm tissues by immunohistochemistry. Urol Oncol doi:10.1016/j urolonc.2011.05.009

  89. Jurgens B, Schmitz-Drager BJ, Schulz WA (1996) Hypomethylation of l1 line sequences prevailing in human urothelial carcinoma. Cancer Res 56(24):5698–5703

    CAS  PubMed  Google Scholar 

  90. Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T (2000) Hypomethylation of line1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 30(7):306–309

    CAS  PubMed  Google Scholar 

  91. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32(3):487–490

    CAS  PubMed  Google Scholar 

  92. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83(2):155–158

    CAS  PubMed  Google Scholar 

  93. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48(5):880–888

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, Jones PA (1995) Methylation of the 5′ cpg island of the p16/cdkn2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55(20):4531–4535

    CAS  PubMed  Google Scholar 

  95. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55(22):5195–5199

    CAS  PubMed  Google Scholar 

  96. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al (1994) Silencing of the vhl tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91(21):9700–9704

    CAS  PubMed  Google Scholar 

  97. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ cpg island methylation is associated with transcriptional silencing of the tumour suppressor p16/cdkn2/mts1 in human cancers. Nat Med 1(7):686–692

    CAS  PubMed  Google Scholar 

  98. Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN (1998) Hypermethylation of the hmlh1 promoter in colon cancer with microsatellite instability. Cancer Res 58(15):3455–3460

    CAS  PubMed  Google Scholar 

  99. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, Li GM, Drummond J, Modrich PL, Sedwick WD, Markowitz SD (1998) Biallelic inactivation of hmlh1 by epigenetic gene silencing, a novel mechanism causing human msi cancers. Proc Natl Acad Sci USA 95(15):8698–8702

    CAS  PubMed  Google Scholar 

  100. Catteau A, Harris WH, Xu CF, Solomon E (1999) Methylation of the brca1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18(11):1957–1965

    CAS  PubMed  Google Scholar 

  101. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) Cpg island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    CAS  PubMed  Google Scholar 

  102. Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 21(35):5380–5387

    CAS  PubMed  Google Scholar 

  103. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    CAS  PubMed  Google Scholar 

  104. Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB (1993) Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85(15):1235–1240

    CAS  PubMed  Google Scholar 

  105. Schmidt WM, Sedivy R, Forstner B, Steger GG, Zochbauer-Muller S, Mader RM (2007) Progressive up-regulation of genes encoding DNA methyltransferases in the colorectal adenoma-carcinoma sequence. Mol Carcinog 46(9):766–772

    CAS  PubMed  Google Scholar 

  106. Nosho K, Shima K, Irahara N, Kure S, Baba Y, Kirkner GJ, Chen L, Gokhale S, Hazra A, Spiegelman D, Giovannucci EL, Jaenisch R, Fuchs CS, Ogino S (2009) Dnmt3b expression might contribute to cpg island methylator phenotype in colorectal cancer. Clin Cancer Res 15(11):3663–3671

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ibrahim AE, Arends MJ, Silva AL, Wyllie AH, Greger L, Ito Y, Vowler SL, Huang TH, Tavare S, Murrell A, Brenton JD (2011) Sequential DNA methylation changes are associated with dnmt3b overexpression in colorectal neoplastic progression. Gut 60(4):499–508

    CAS  PubMed  Google Scholar 

  108. Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum mol genet 16(Spec 1):R50–59

    Google Scholar 

  109. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein ezh2 directly controls DNA methylation. Nature 439(7078):871–874

    CAS  PubMed  Google Scholar 

  110. Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16(3):239–246

    CAS  PubMed  Google Scholar 

  111. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715):164–168

    CAS  PubMed  Google Scholar 

  112. Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J, Peng G, Shimada H, Triche TJ, Lawlor ER (2008) Bmi-1 promotes ewing sarcoma tumorigenicity independent of cdkn2a repression. Cancer Res 68(16):6507–6515

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136(6):1122–1135

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) Ezh2 is downstream of the prb-e2f pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335

    CAS  PubMed  Google Scholar 

  115. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene ezh2 is required for early mouse development. Mol Cell Biol 21(13):4330–4336

    PubMed Central  PubMed  Google Scholar 

  116. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone h3 lysine 27 methylation in x inactivation. Science 300(5616):131–135

    CAS  PubMed  Google Scholar 

  117. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, Mehra R, Laxman B, Cao X, Yu J, Kleer CG, Varambally S, Chinnaiyan AM (2008) Repression of e-cadherin by the polycomb group protein ezh2 in cancer. Oncogene 27(58):7274–7284

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, Bagchi A, Simon JA, Huang H (2010) Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of ezh2. Nat Cell Biol 12(11):1108–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Fluge O, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S, Lilleng R, Eide TJ, Halvorsen TB, Tveit KM, Otte AP, Akslen LA, Dahl O (2009) Expression of ezh2 and ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 101(8):1282–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Richter GH, Plehm S, Fasan A, Rossler S, Unland R, Bennani-Baiti IM, Hotfilder M, Lowel D, von Luettichau I, Mossbrugger I, Quintanilla-Martinez L, Kovar H, Staege MS, Muller-Tidow C, Burdach S (2009) Ezh2 is a mediator of ews/fli1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 106(13):5324–5329

    CAS  PubMed  Google Scholar 

  121. Rao ZY, Cai MY, Yang GF, He LR, Mai SJ, Hua WF, Liao YJ, Deng HX, Chen YC, Guan XY, Zeng YX, Kung HF, Xie D (2010) Ezh2 supports ovarian carcinoma cell invasion and/or metastasis via regulation of tgf-beta1 and is a predictor of outcome in ovarian carcinoma patients. Carcinogenesis 31(9):1576–1583

    CAS  PubMed  Google Scholar 

  122. Chen Y, Xie D, Yin Li W, Man Cheung C, Yao H, Chan CY, Chan CY, Xu FP, Liu YH, Sung JJ, Kung HF (2010) Rnai targeting ezh2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo. Cancer Lett 297(1):109–116

    CAS  PubMed  Google Scholar 

  123. Hu SP, Zhou GB, Luan JA, Chen YP, Xiao DW, Deng YJ, Huang LQ, Cai KL (2010) Polymorphisms of hla-a and hla-b genes in genetic susceptibility to esophageal carcinoma in chaoshan han chinese. Dis Esophagus 23(1):46–52

    CAS  PubMed  Google Scholar 

  124. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, Daignault S, Al-Mulla F, Keller E, Bonavida B, de la Serna I, Yeung KC (2012) Polycomb protein ezh2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor rkip in breast and prostate cancer. Cancer Res 72(12):3091–3104

    CAS  PubMed  Google Scholar 

  125. Yoon KA, Gil HJ, Han J, Park J, Lee JS (2010) Genetic polymorphisms in the polycomb group gene ezh2 and the risk of lung cancer. J Thorac Oncol 5(1):10–16

    PubMed  Google Scholar 

  126. Crea F, Fornaro L, Paolicchi E, Masi G, Frumento P, Loupakis F, Salvatore L, Cremolini C, Schirripa M, Graziano F, Ronzoni M, Ricci V, Farrar WL, Falcone A, Danesi R (2012) An ezh2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Ann Oncol 23(5):1207–1213

    CAS  PubMed  Google Scholar 

  127. Simon J (1995) Locking in stable states of gene expression: transcriptional control during drosophila development. Curr Opin Cell Biol 7(3):376–385

    CAS  PubMed  Google Scholar 

  128. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Krivtsov AV, Armstrong SA (2007) Mll translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    CAS  PubMed  Google Scholar 

  130. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at lys16 and trimethylation at lys20 of histone h4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    CAS  PubMed  Google Scholar 

  131. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    CAS  PubMed  Google Scholar 

  132. Song JS, Kim YS, Kim DK, Park SI, Jang SJ (2012) Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int 62(3):182–190

    PubMed  Google Scholar 

  133. Pritchard CC, Cheng HH, Tewari M (2012) Microrna profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    CAS  PubMed  Google Scholar 

  134. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) Microrna expression in zebrafish embryonic development. Science 309(5732):310–311

    CAS  PubMed  Google Scholar 

  135. Alvarez-Garcia I, Miska EA (2005) Microrna functions in animal development and human disease. Development 132(21):4653–4662

    CAS  PubMed  Google Scholar 

  136. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microrna-127 with downregulation of the proto-oncogene bcl6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    CAS  PubMed  Google Scholar 

  137. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microrna in human cancer cells. Cancer Res 67(4):1424–1429

    CAS  PubMed  Google Scholar 

  138. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9(7):489–499

    CAS  PubMed  Google Scholar 

  139. Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 37(2):147–151

    CAS  PubMed  Google Scholar 

  140. Pretlow TP, Barrow BJ, Ashton WS, O’Riordan MA, Pretlow TG, Jurcisek JA, Stellato TA (1991) Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res 51(5):1564–1567

    CAS  PubMed  Google Scholar 

  141. Greenspan EJ, Cyr JL, Pleau DC, Levine J, Rajan TV, Rosenberg DW, Heinen CD (2007) Microsatellite instability in aberrant crypt foci from patients without concurrent colon cancer. Carcinogenesis 28(4):769–776

    CAS  PubMed  Google Scholar 

  142. Jen J, Powell SM, Papadopoulos N, Smith KJ, Hamilton SR, Vogelstein B, Kinzler KW (1994) Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54(21):5523–5526

    CAS  PubMed  Google Scholar 

  143. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    CAS  PubMed  Google Scholar 

  144. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor lef-1. Nature 382(6592):638–642

    CAS  PubMed  Google Scholar 

  145. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-myc as a target of the apc pathway. Science 281(5382):1509–1512

    CAS  PubMed  Google Scholar 

  146. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin d1 gene is a target of the beta-catenin/lef-1 pathway. Proc Natl Acad Sci USA 96(10):5522–5527

    CAS  PubMed  Google Scholar 

  147. Friedrich A, Kullmann F (2003) familial adenomatous polyposis syndrome (fap): pathogenesis and molecular mechanisms. Med Klin (Munich) 98(12):776–782

    CAS  Google Scholar 

  148. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the wnt pathway. Oncogene 25(57):7531–7537

    CAS  PubMed  Google Scholar 

  149. Michor F, Iwasa Y, Rajagopalan H, Lengauer C, Nowak MA (2004) Linear model of colon cancer initiation. Cell Cycle 3(3):358–362

    CAS  PubMed  Google Scholar 

  150. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    CAS  PubMed  Google Scholar 

  151. Shapiro P (2002) Ras-map kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 39(4–5):285–330

    CAS  PubMed  Google Scholar 

  152. Al-Mulla F, Going JJ, Sowden ET, Winter A, Pickford IR, Birnie GD (1998) Heterogeneity of mutant versus wild-type ki-ras in primary and metastatic colorectal carcinomas, and association of codon-12 valine with early mortality. J Pathol 185(2):130–138

    CAS  PubMed  Google Scholar 

  153. Giaretti W, Monaco R, Pujic N, Rapallo A, Nigro S, Geido E (1996) Intratumor heterogeneity of k-ras2 mutations in colorectal adenocarcinomas: association with degree of DNA aneuploidy. Am J Pathol 149(1):237–245

    CAS  PubMed  Google Scholar 

  154. Shibata D, Schaeffer J, Li ZH, Capella G, Perucho M (1993) Genetic heterogeneity of the c-k-ras locus in colorectal adenomas but not in adenocarcinomas. J Natl Cancer Inst 85(13):1058–1063

    CAS  PubMed  Google Scholar 

  155. Ishii M, Sugai T, Habano W, Nakamura S (2004) Analysis of ki-ras gene mutations within the same tumor using a single tumor crypt in colorectal carcinomas. J Gastroenterol 39(6):544–549

    CAS  PubMed  Google Scholar 

  156. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW et al (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247(4938):49–56

    CAS  PubMed  Google Scholar 

  157. Martin M, Simon-Assmann P, Kedinger M, Mangeat P, Real FX, Fabre M (2006) Dcc regulates cell adhesion in human colon cancer derived ht-29 cells and associates with ezrin. Eur J Cell Biol 85(8):769–783

    CAS  PubMed  Google Scholar 

  158. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350–353

    CAS  PubMed  Google Scholar 

  159. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L (1996) Madr2 maps to 18q21 and encodes a tgfbeta-regulated mad-related protein that is functionally mutated in colorectal carcinoma. Cell 86(4):543–552

    CAS  PubMed  Google Scholar 

  160. Rashid A, Hamilton SR (1997) Genetic alterations in sporadic and crohn’s-associated adenocarcinomas of the small intestine. Gastroenterology 113(1):127–135

    CAS  PubMed  Google Scholar 

  161. Takenoshita S, Tani M, Mogi A, Nagashima M, Nagamachi Y, Bennett WP, Hagiwara K, Harris CC, Yokota J (1998) Mutation analysis of the smad2 gene in human colon cancers using genomic DNA and intron primers. Carcinogenesis 19(5):803–807

    CAS  PubMed  Google Scholar 

  162. Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, Utsunomiya J, Kuroki T, Mori T (1999) Higher frequency of smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18(20):3098–3103

    CAS  PubMed  Google Scholar 

  163. Salahshor S, Kressner U, Pahlman L, Glimelius B, Lindmark G, Lindblom A (1999) Colorectal cancer with and without microsatellite instability involves different genes. Genes Chromosomes Cancer 26(3):247–252

    CAS  PubMed  Google Scholar 

  164. Warusavitarne J, McDougall F, de Silva K, Barnetson R, Messina M, Robinson BG, Schnitzler M (2009) Restoring tgfbeta function in microsatellite unstable (msi-h) colorectal cancer reduces tumourigenicity but increases metastasis formation. Int J Colorectal Dis 24(2):139–144

    PubMed  Google Scholar 

  165. Snover DC, Jass JR, Fenoglio-Preiser C, Batts KP (2005) Serrated polyps of the large intestine: a morphologic and molecular review of an evolving concept. Am J Clin Pathol 124(3):380–391

    PubMed  Google Scholar 

  166. O’Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA (2006) Comparison of microsatellite instability, cpg island methylation phenotype, braf and kras status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30(12):1491–1501

    PubMed  Google Scholar 

  167. Rosty C, Parry S, Young JP (2011) Serrated polyposis: an enigmatic model of colorectal cancer predisposition. Patholog Res Int 2011:157073

    PubMed Central  PubMed  Google Scholar 

  168. Boparai KS, Dekker E, Van Eeden S, Polak MM, Bartelsman JF, Mathus-Vliegen EM, Keller JJ, van Noesel CJ (2008) Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of myh-associated polyposis. Gastroenterology 135(6):2014–2018

    CAS  PubMed  Google Scholar 

  169. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C (2010) Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of pten mutation carriers. Gastroenterology 139(6):1927–1933

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Kokko A, Laiho P, Lehtonen R, Korja S, Carvajal-Carmona LG, Jarvinen H, Mecklin JP, Eng C, Schleutker J, Tomlinson IP, Vahteristo P, Aaltonen LA (2006) Ephb2 germline variants in patients with colorectal cancer or hyperplastic polyposis. BMC Cancer 6:145

    PubMed Central  PubMed  Google Scholar 

  171. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    CAS  PubMed  Google Scholar 

  172. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66(4):1883–1890, discussion 1895–1886

    CAS  PubMed  Google Scholar 

  173. Odoux C, Fohrer H, Hoppo T, Guzik L, Stolz DB, Lewis DW, Gollin SM, Gamblin TC, Geller DA, Lagasse E (2008) A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res 68(17):6932–6941

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Chan AO, Broaddus RR, Houlihan PS, Issa JP, Hamilton SR, Rashid A (2002) Cpg island methylation in aberrant crypt foci of the colorectum. Am J Pathol 160(5):1823–1830

    CAS  PubMed  Google Scholar 

  175. Moinova HR, Chen WD, Shen L, Smiraglia D, Olechnowicz J, Ravi L, Kasturi L, Myeroff L, Plass C, Parsons R, Minna J, Willson JK, Green SB, Issa JP, Markowitz SD (2002) Hltf gene silencing in human colon cancer. Proc Natl Acad Sci USA 99(7):4562–4567

    CAS  PubMed  Google Scholar 

  176. Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, Lutterbaugh J, Rerko RM, Casey G, Issa JP, Willis J, Willson JK, Plass C, Markowitz SD (2003) Slc5a8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci USA 100(14):8412–8417

    CAS  PubMed  Google Scholar 

  177. Chen S, Watson P, Parmigiani G (2005) Accuracy of msi testing in predicting germline mutations of msh2 and mlh1: a case study in bayesian meta-analysis of diagnostic tests without a gold standard. Biostatistics 6(3):450–464

    PubMed Central  PubMed  Google Scholar 

  178. Scott RJ, Meldrum C, Crooks R, Spigelman AD, Kirk J, Tucker K, Koorey D (2001) Familial adenomatous polyposis: more evidence for disease diversity and genetic heterogeneity. Gut 48(4):508–514

    CAS  PubMed  Google Scholar 

  179. Zaanan A, Cuilliere-Dartigues P, Guilloux A, Parc Y, Louvet C, de Gramont A, Tiret E, Dumont S, Gayet B, Validire P, Flejou JF, Duval A, Praz F (2010) Impact of p53 expression and microsatellite instability on stage iii colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin. Ann Oncol 21(4):772–780

    CAS  PubMed  Google Scholar 

  180. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, French AJ, Kabat B, Foster NR, Torri V, Ribic C, Grothey A, Moore M, Zaniboni A, Seitz JF, Sinicrope F, Gallinger S (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28(20):3219–3226

    CAS  PubMed  Google Scholar 

  181. Kim ST, Lee J, Park SH, Park JO, Lim HY, Kang WK, Kim JY, Kim YH, Chang DK, Rhee PL, Kim DS, Yun H, Cho YB, Kim HC, Yun SH, Lee WY, Chun HK, Park YS (2010) Clinical impact of microsatellite instability in colon cancer following adjuvant folfox therapy. Cancer Chemother Pharmacol 66(4):659–667

    CAS  PubMed  Google Scholar 

  182. Des Guetz G, Lecaille C, Mariani P, Bennamoun M, Uzzan B, Nicolas P, Boisseau A, Sastre X, Cucherousset J, Lagorce C, Schischmanoff PO, Morere JF (2010) Prognostic impact of microsatellite instability in colorectal cancer patients treated with adjuvant folfox. Anticancer Res 30(10):4297–4301

    CAS  PubMed  Google Scholar 

  183. Zaanan A, Flejou JF, Emile JF, Des GG, Cuilliere-Dartigues P, Malka D, Lecaille C, Validire P, Louvet C, Rougier P, de Gramont A, Bonnetain F, Praz F, Taieb J (2011) Defective mismatch repair status as a prognostic biomarker of disease-free survival in stage iii colon cancer patients treated with adjuvant folfox chemotherapy. Clin Cancer Res 17(23):7470–7478

    CAS  PubMed  Google Scholar 

  184. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefevre L, Louvet C, Tournigand C, Lefevre JH, Parc Y, Tiret E, Flejou JF, Gaub MP, Garrido C, Duval A (2011) Expression of a mutant hsp110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 17(10):1283–1289

    CAS  PubMed  Google Scholar 

  185. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant cpg-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24(2):132–138

    CAS  PubMed  Google Scholar 

  186. Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M (2009) A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4(4):255–264

    CAS  PubMed  Google Scholar 

  187. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Lowenberg B, Delwel R, Melnick A (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1):13–27

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Houshdaran S, Hawley S, Palmer C, Campan M, Olsen MN, Ventura AP, Knudsen BS, Drescher CW, Urban ND, Brown PO, Laird PW (2010) DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines. PLoS One 5(2):e9359

    PubMed Central  PubMed  Google Scholar 

  189. Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP (2010) Cpg island hypermethylation in human astrocytomas. Cancer Res 70(7):2718–2727

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Xu Y, Hu B, Choi AJ, Gopalan B, Lee BH, Kalady MF, Church JM, Ting AH (2012) Unique DNA methylome profiles in cpg island methylator phenotype colon cancers. Genome Res 22(2):283–291

    CAS  PubMed  Google Scholar 

  191. Ebert MP, Tanzer M, Balluff B, Burgermeister E, Kretzschmar AK, Hughes DJ, Tetzner R, Lofton-Day C, Rosenberg R, Reinacher-Schick AC, Schulmann K, Tannapfel A, Hofheinz R, Rocken C, Keller G, Langer R, Specht K, Porschen R, Stohlmacher-Williams J, Schuster T, Strobel P, Schmid RM (2012) Tfap2e-dkk4 and chemoresistance in colorectal cancer. N Engl J Med 366(1):44–53

    CAS  PubMed  Google Scholar 

  192. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grutzmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated sept9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55(7):1337–1346

    CAS  PubMed  Google Scholar 

  193. Cortese R, Kwan A, Lalonde E, Bryzgunova O, Bondar A, Wu Y, Gordevicius J, Park M, Oh G, Kaminsky Z, Tverkuviene J, Laurinavicius A, Jankevicius F, Sendorek DH, Haider S, Wang SC, Jarmalaite S, Laktionov P, Boutros PC, Petronis A (2012) Epigenetic markers of prostate cancer in plasma circulating DNA. Hum Mol Genet 21(16):3619–3631

    CAS  PubMed  Google Scholar 

  194. Musolino C, Sant’antonio E, Penna G, Alonci A, Russo S, Granata A, Allegra A (2010) Epigenetic therapy in myelodysplastic syndromes. Eur J Haematol 84(6):463–473

    CAS  PubMed  Google Scholar 

  195. Zhu WG, Otterson GA (2003) The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents 3(3):187–199

    CAS  PubMed  Google Scholar 

  196. Yu Y, Zeng P, Xiong J, Liu Z, Berger SL, Merlino G (2010) Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic ezrin gene. PLoS One 5(9):e12710

    PubMed Central  PubMed  Google Scholar 

  197. Schwab ED, Pienta KJ (1996) Cancer as a complex adaptive system. Med hypotheses 47(3):235–241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ri.MED foundation (M. G. F.) and NIH grant DK085711 (E. L.). The authors are grateful to Julie Chandler, Lynda Guzik, and Aaron DeWard for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lagasse Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Francipane, M.G., Lagasse, E. (2013). A Study of Cancer Heterogeneity: From Genetic Instability to Epigenetic Diversity in Colorectal Cancer. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_14

Download citation

Publish with us

Policies and ethics