Skip to main content
  • 9125 Accesses

Abstract

In the preceding chapter, we gave an overview of embedded surfaces. We now turn to the important question of covariant differentiation on the surface. We will divide the construction of the covariant derivative into two parts. We will first define this operator for objects with surface indices. The definition will be completely analogous to that of the covariant derivative in the ambient space. While the definition will be identical, some of the important characteristics of the surface covariant derivative will be quite different. In particular, surface covariant derivatives do not commute. Our proof of commutativity for the ambient derivative was based on the existence of affine coordinates in Euclidean spaces. Since affine coordinates may not be possible on a curved surface, that argument is no longer available. We will also discover that the surface covariant derivative is not metrinilic with respect to the covariant basis S α. This will prove fundamental and will give rise to the curvature tensor, which will be further developed in Chap. 12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. L. Bewley. Tensor Analysis of Electric Circuits and Machines. Ronald Press, 1961.

    Google Scholar 

  2. A. Borisenko and I.E.Tarapov. Vector and Tensor Analysis with Applications. Dover Publications, New York, 1979.

    Google Scholar 

  3. S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings, 2003.

    Google Scholar 

  4. E. Cartan. Geometry of Riemannian Spaces. Math Science Pr, 1983.

    MATH  Google Scholar 

  5. E. Cartan. Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Elie Cartan at the Sorbonne in 1926–27. World Scientific Pub Co Inc, 2002.

    Google Scholar 

  6. I. Chavel. Riemannian Geometry: A Modern Introduction (Cambridge Studies in Advanced Mathematics). Cambridge University Press, 2006.

    Book  Google Scholar 

  7. E. Christoffel. Sul problema delle temperature stazionarie e la rappresentazione di una data superficie. Annali di Matematica Pura ed Applicata, 1(1):89–103, 1867. On the problem of stationary temperature and the representation of a given area.

    Article  MATH  Google Scholar 

  8. D. Danielson. Vectors And Tensors In Engineering And Physics: Second Edition. Westview Press, 2003.

    Google Scholar 

  9. R. Descartes. The Geometry. Dover Publications, New York, 1954.

    Google Scholar 

  10. A. Einstein. Die grundlage der allgemeinen relativittstheorie. Ann. der Physik, 49:769–822, 1916.

    Article  MATH  Google Scholar 

  11. Euclid. The Elements: Books I - XIII - Complete and Unabridged. Barnes & Noble, 2006.

    Google Scholar 

  12. L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Opera Omnia, 24(1), 1897.

    Google Scholar 

  13. I. Gelfand. Lectures on Linear Algebra. Dover Publications, New York, 1989.

    Google Scholar 

  14. J. W. GIbbs. Vector analysis: A text-book for the use of students of mathematics and physics. Dover Publications, 1960.

    MATH  Google Scholar 

  15. I. Grattan-Guiness. From the calculus to set theory, 1630–1910: an introductory history. Princeton University Press, Princeton, 2000.

    Google Scholar 

  16. M. Grinfeld. Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York, NY, 1991.

    Google Scholar 

  17. P. Grinfeld. Exact nonlinear equations for fluid films and proper adaptations of conservation theorems from classical hydrodynamics. J. Geom. Symm. Phys., 16:1–21, 2009.

    MathSciNet  MATH  Google Scholar 

  18. P. Grinfeld. Hamiltonian dynamic equations for fluid films. Stud. Appl. Math., 125:223–264, 2010.

    MathSciNet  MATH  Google Scholar 

  19. P. Grinfeld. A variable thickness model for fluid films under large displacements. Phys. Rev. Lett., 105:137802, 2010.

    Article  Google Scholar 

  20. P. Grinfeld. A better calculus of moving surfaces. J. Geom. Symm. Phys., 26:61–69, 2012.

    MathSciNet  MATH  Google Scholar 

  21. J. Hadamard. Mmoire sur le problme d’analyse relatif l’quilibre des plaques elastiques encastres, Oeuvres, tome 2. Hermann, 1968.

    Google Scholar 

  22. P. Halmos. Finite-dimensional vector spaces. Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

  23. F. Harley. Differential forms, with applications to the physical sciences. Academic Press, New York, 1963.

    Google Scholar 

  24. V. Katz. The history of stokes’ theorem. Helv. Phys. Acta. Supp., 52(3):146–156, 1979.

    MATH  Google Scholar 

  25. L. Kollros. Albert einstein en suisse souvenirs. Helv. Phys. Acta. Supp., 4:271–281, 1956.

    Google Scholar 

  26. J. Lagrange. Essai d’une nouvelle mthode pour dterminer les maxima et les minima des formules intgrales indfinies. Miscellanea Taurinensia, 1761.

    Google Scholar 

  27. P. Lax. Linear algebra and its applications. Wiley-Interscience, Hoboken, N.J, 2007.

    MATH  Google Scholar 

  28. T. Levi-Civita. The Absolute Differential Calculus (Calculus of Tensors). Dover Publications, 1977.

    Google Scholar 

  29. S. Lovett. Differential Geometry of Manifolds. A K Peters Ltd, 2010.

    MATH  Google Scholar 

  30. J. Maxwell. Treatise on Electricity and Magnetism. Cambridge University Press, Cambridge, 2010.

    Book  Google Scholar 

  31. A. McConnell. Applications of Tensor Analysis. Dover Publications, New York, 1957.

    Google Scholar 

  32. F. Morgan. Riemannian Geometry: A Beginners Guide, Second Edition. A K Peters/CRC Press, 1998.

    Google Scholar 

  33. P. Nastasia and R. Tazzioli. Toward a scientific and personal biography of Tullio Levi-Civita. Historia Mathematica, 32(2):203–236, 2005.

    Article  MathSciNet  Google Scholar 

  34. G. Ricci and T. Levi-Civita. Mthodes de calcul diffrentiel absolu et leurs applications. Mathematische Annalen, 54:125–201, 1900.

    Article  MathSciNet  Google Scholar 

  35. B. Riemann. Ueber die hypothesen, welche der geometrie zu grunde liegen. Abhandlungen der Kniglichen Gesellschaft der Wissenschaften zu Gttingen, 13, 1867. On the hypotheses that lie at the foundation of geometry.

    Google Scholar 

  36. B. Riemann. Gesammelte Mathematische Werke. Unknown, 1919. The Collected Mathematical Works with commentary by Hermann Weyl.

    Google Scholar 

  37. B. Riemann. Sochineniya. GITTL, 1948. The Collected Mathematical Works with commentary by Hermann Weyl, in Russian.

    Google Scholar 

  38. W. Rudin. Principles of mathematical analysis. McGraw-Hill, New York, 1976.

    MATH  Google Scholar 

  39. H. Schwarz. Sur une definition erronee de aire d’une surface courbe. Ges. Math. Abhandl, 2:309–311, 369–370, 1882.

    Google Scholar 

  40. J. Simmonds. A brief on Tensor Analysis. Springer, New York Berlin, 1994.

    Book  MATH  Google Scholar 

  41. I. Sokolnikoff. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. Krieger Pub Co, 1990.

    Google Scholar 

  42. B. Spain. Tensor Calculus: a concise course. Dover Publications, Mineola, N.Y, 2003.

    Google Scholar 

  43. M. Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. W.A. Benjamin, New York, 1965.

    MATH  Google Scholar 

  44. G. Strang. Introduction to Linear Algebra, 4th edition. Wellesley-Cambridge Press, 2009.

    Google Scholar 

  45. T. Thomas. Plastic Flow and Fracture in Solids. Academic Press, New York, NY, 1961.

    MATH  Google Scholar 

  46. T. Thomas. Concepts from Tensor Analysis And Differential Geometry. Academic Press, New York, 1965.

    MATH  Google Scholar 

  47. H. Weyl. Space, Time, Matter. Dover Publications, 1952.

    Google Scholar 

  48. F. Zames. Surface area and the cylinder area paradox. The Two-Year College Mathematics Journal, 8(4):207–211, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grinfeld, P. (2013). The Covariant Surface Derivative. In: Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7867-6_11

Download citation

Publish with us

Policies and ethics