Skip to main content

Mechanistic Models for Shelf Life Prediction

  • Chapter
  • First Online:
Book cover Packaging for Food Preservation

Part of the book series: Food Engineering Series ((FSES))

  • 2735 Accesses

Abstract

This chapter focuses on how package mass transport properties and food degradation process equations can be combined to predict food shelf life. There are several ways to combine these models, and the way the mass flux is calculated is one of the possible modes of gathering them. Therefore, two different methods for calculating the mass flux of low molecular weight compounds through the package are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrer RM, Barrie JA, Slater J (1958) Sorption and diffusion of ethyl cellulose. III: comparison between ethyl cellulose and rubber. J Polym Sci 27:177–197

    Article  CAS  Google Scholar 

  • Bell LN, Labuza TP (2000) Moisture sorption: practical aspects of sorption isotherm measurement and use, 2nd edn. American Association of Cereal Chemists, St. Paul, p 57

    Google Scholar 

  • Blekas G, Tsimidou M, Boskou D (1995) Contribution of a-tocopherol to olive oil stability. Food Chem 52:289–294

    Article  CAS  Google Scholar 

  • Chern RT, Koros WJ, Sanders ES, Yui R (1983) Second component. Effects in sorption and permeation of gases in glassy polymers. Membr Sci 15:157–169

    Article  CAS  Google Scholar 

  • Conte A, Scrocco C, Brescia I, Del Nobile MA (2009) Packaging strategies to prolong the shelf life of minimally processed lampascioni (Muscari comosum). J Food Eng 90:199–206

    Article  CAS  Google Scholar 

  • Del Nobile MA (2001) Packaging design for potato chips. J Food Eng 47:211–215

    Article  Google Scholar 

  • Del Nobile MA, Mensitieri G, Nicolais L, Masi P (1997) The influence of the thermal history on the shelf life of carbonated beverages bottled in plastic containers. J Food Eng 34:1–13

    Article  Google Scholar 

  • Del Nobile MA, Ambrosino ML, Sacchi R, Masi P (2003a) Design of plastic bottles for packaging of virgin olive oil. J Food Sci 68:170–175

    Article  Google Scholar 

  • Del Nobile MA, Buonocore GG, Limbo S, Fava P (2003b) Shelf life prediction of cereal based dry foods packed in moisture sensitive films. J Food Sci 68:1292–1300

    Article  Google Scholar 

  • Del Nobile MA, Conte A, Cannarsi M, Sinigaglia M (2008a) Use of biodegradable films for prolonging the shelf life of minimally processed lettuce. J Food Eng 85:317–325

    Article  Google Scholar 

  • Del Nobile MA, Sinigaglia M, Conte A, Speranza B, Scrocco C, Brescia I, Bevilacqua A, Laverse J, La Notte E, Antonacci D (2008b) Influence of postharvest treatments and film permeability on quality decay kinetics of minimally processed grapes. Postharvest Biol Technol 47:389–396

    Article  Google Scholar 

  • Del Nobile MA, Conte A, Scrocco C, Brescia I, Speranza B, Sinigaglia M, Perniola R, Antonacci D (2009) A study on quality loss of minimally processed grapes as affected by film packaging. Postharvest Biol Technol 51:21–26

    Article  Google Scholar 

  • Fava P, Limbo S, Piergiovanni L (2000) Shelf-life modeling of moisture sensitive food products. Industrie Alimentari 32:121–128

    Google Scholar 

  • Fenelon PJ (1973) Prediction of pressure loss in pressurized plastic containers. Polym Eng Sci 13:440–451

    Article  CAS  Google Scholar 

  • Frankel EN (1998) Lipid oxidation. The Oily Press, Dundee, p 303

    Google Scholar 

  • Heiss R (1958) Shelf life determination. Modern Packaging 31:119–127

    Google Scholar 

  • Iglesias HA, Viollaz P, Chirife J (1979) Technical note: a technique for predicting moisture transfer in mixtures of packaged dehydrated foods. J Food Sci 14:89–93

    Google Scholar 

  • Koros WJ (1980) Model for sorption of mixed gases in glassy polymers. J Polym Sci 18:981–992

    CAS  Google Scholar 

  • Koros WJ, Hellums MW (1990) Encyclopedia of polymer science and engineering. Wiley, New York, pp 724–802, Supplement Volume

    Google Scholar 

  • Koros WJ, Paul DR (1978) CO2sorption in poly(ethylene terephthalate) above and below the glass transition. J Polym Sci 16:1947–1963

    CAS  Google Scholar 

  • Labuza TP (1971) Kinetics of lipid oxidation in foods. CRC Crit Rev Food Technol 2:355–405

    Article  Google Scholar 

  • Labuza TP, Contreras-Medellin R (1981) Prediction of moisture protection requirements for foods. Cereal Foods World 26:335–343

    Google Scholar 

  • Lucera A, Costa C, Mastromatteo M, Conte A, Del Nobile MA (2010) Influence of different packaging systems on fresh-cut zucchini (Cucurbita pepo). Innov Food Sci Emerg Tec 11:361–368

    Article  CAS  Google Scholar 

  • Masi P, Paul DR (1982) Modelling gas transport in packaging applications. J Membr Sci 12:137–151

    Article  CAS  Google Scholar 

  • Michaels AS, Vieth WR, Barrie JA (1963) Solution of gases in polyethylene ter-ephtalate. J Polym Sci 34:1–12

    CAS  Google Scholar 

  • Myers AW, Meyer JA, Rogers CE, Stannett V, Szwarc M (1961) Studies in the gas and vapor permeability of plastic films and coated papers. IV: The permeability of water vapor. Tappi 44: 58–64

    Google Scholar 

  • Papadopulos G, Boskou D (1991) Antioxidant effect of natural phenols in olive oil. J Am Oil Chem Soc 68:669–678

    Article  Google Scholar 

  • Paul DR (1979) Gas sorption and transport in glassy polymers. Bel: Bunsenges. Phys Chem 83:294–302

    Article  CAS  Google Scholar 

  • Paul DR, Koros WJ (1976) Effect of partially immobilizing sorption on permeability and diffusion time lag. J Polym Sci 14:675–685

    CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989a) Numerical recipes in Pascal. Cambridge University Press, Cambridge, pp 602–607

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989b) Numerical recipes in pascal. Cambridge University Press, Cambridge, p 122

    Google Scholar 

  • Quast DG, Karel M (1972) Computer simulation of storage life of foods undergoing spoilage by two interacting mechanisms. J Food Sci 37:679–683

    Article  Google Scholar 

  • Quast DG, Karel M, Rand M (1972) Development of a mathematical model for oxidation of potato chips as a function of oxygen pressure, extent of oxidation and equilibrium relative humidity. J Food Sci 37:673–678

    Article  Google Scholar 

  • Rai DR, Tyagi SK, Jha SN, Mohan S (2008) Qualitative changes in the broccoli (Brassica oleracea var. italica) under modified atmosphere packaging in perforated polymeric film. J Food Sci Technol 45:247–250

    CAS  Google Scholar 

  • Rogers C, Meyer J A, Stannett V, Szwarc M (1956) Studies in the gas and vapor permeability of plastic films and coated papers. I: Determination of the permeability constant. Tappi 39: 737–741

    Google Scholar 

  • Saravacos GD (1986) Mass transfer properties of foods. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods. Marcel Dekker, New York, p 161

    Google Scholar 

  • Satue MT, Huang SW, Frankel EN (1995) Effect of natural antioxidants in virgin olive oil on oxidative stability of refined, bleached, and deodorized olive oil. J Am Oil Chem Soc 72:1131–1137

    Article  CAS  Google Scholar 

  • Tsimidou M, Papadopoulos G, Boskou D (1992) Phenolic compounds and stability of virgin olive oil. Part I. Food Chem 45:141–144

    Article  CAS  Google Scholar 

  • Tubert AH, Iglesias HA (1985) Water sorption isotherms and prediction of moisture gain during storage of packaged cereal crackers. Lebensm Wiss Technol 19:365–368

    Google Scholar 

  • Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging. Trends Food Sci Technol 10:77–86

    Article  CAS  Google Scholar 

  • Vieth WR, Tam PM, Michaels AS (1966) Dual sorption mechanism in glassy poly-styrene. J Colloid Interface Sci 22:360–370

    Article  CAS  Google Scholar 

  • Wolf W, Spiess WEL, Jung G (1985) Standardization of isotherm measurements (COST-PROJECT 90 and 90bis). In: Simatos D, Multon JL (eds) Properties of water in foods, vol 90, NATO ASI series, series E: applied sciences. M. Nijhoff, Dordrecht/Boston, p 661

    Chapter  Google Scholar 

  • Yasuda H, Stannett V (1975) Permeability coefficients. In: Brandrup J, Immergut EH (eds) Polymer handbook. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Del Nobile, M.A., Conte, A. (2013). Mechanistic Models for Shelf Life Prediction. In: Packaging for Food Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7684-9_3

Download citation

Publish with us

Policies and ethics