Skip to main content

Biophysics of Membrane Currents in Heart Failure

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Heart failure (HF) is associated with an increased risk of sudden death and multiple ion channel changes. These ion channel changes that are thought to underlie the increased arrhythmic risk. Understanding these changes and their origins should allow for more effective therapeutic strategies free from the proarrhythmic effects limiting current ion channel-blocking drugs. This review summarizes some of the recent findings about ion channel biophysical changes during HF with an eye to the new therapeutic possibilities suggested by the data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De, S. G., et al. (2010). Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation, 121, e46–e215.

    Google Scholar 

  2. Kong, M. H., Fonarow, G. C., Peterson, E. D., Curtis, A. B., Hernandez, A. F., Sanders, G. D., et al. (2011). Systematic review of the incidence of sudden cardiac death in the United States. Journal of the American College of Cardiology, 57, 794–801.

    Google Scholar 

  3. Deo, R., & Albert, C. M. (2012). Epidemiology and genetics of sudden cardiac death. Circulation, 125, 620–637.

    Google Scholar 

  4. Stevenson, W. G., Stevenson, L. W., Middlekauff, H. R., & Saxon, L. A. (1993). Sudden death prevention in patients with advanced ventricular dysfunction. Circulation, 88, 2953–2961.

    Google Scholar 

  5. Ravens, U., & Cerbai, E. (2008). Role of potassium currents in cardiac arrhythmias. Europace, 10, 1133–1137.

    Google Scholar 

  6. Gintant, G. A., Su, Z., Martin, R. L., & Cox, B. F. (2006). Utility of hERG assays as surrogate markers of delayed cardiac repolarization and QT safety. Toxicologic Pathology, 34, 81–90.

    Google Scholar 

  7. Nerbonne, J. M., & Kass, R. S. (2005). Molecular physiology of cardiac repolarization. Physiological Reviews, 85, 1205–1253.

    Google Scholar 

  8. Nattel, S., Khairy, P., & Schram, G. (2001). Arrhythmogenic ionic remodeling: Adaptive responses with maladaptive consequences. Trends in Cardiovascular Medicine, 11, 295–301.

    Google Scholar 

  9. Sah, R., Ramirez, R. J., Oudit, G. Y., Gidrewicz, D., Trivieri, M. G., Zobel, C., et al. (2003). Regulation of cardiac excitation-contraction coupling by action potential repolarization: Role of the transient outward potassium current (I to). The Journal of Physiology, 546, 5–18.

    Google Scholar 

  10. Rosati, B., & McKinnon, D. (2004). Regulation of ion channel expression. Circulation Research, 94, 874–883.

    Google Scholar 

  11. Janse, M. J. (2004). Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovascular Research, 61, 208–217.

    Google Scholar 

  12. Li, G. R., Lau, C. P., Ducharme, A., Tardif, J. C., & Nattel, S. (2002). Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. American Journal of Physiology. Heart and Circulatory Physiology, 283, H1031–H1041.

    Google Scholar 

  13. Nuss, H. B., Kaab, S., Kass, D. A., Tomaselli, G. F., & Marban, E. (1999). Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. American Journal of Physiology, 277, H80–H91.

    Google Scholar 

  14. Li, G. R., Lau, C. P., Leung, T. K., & Nattel, S. (2004). Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm, 1, 460–468.

    Google Scholar 

  15. Tsuji, Y., Zicha, S., Qi, X. Y., Kodama, I., & Nattel, S. (2006). Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia. Circulation, 113, 345–355.

    Google Scholar 

  16. Kaab, S., Dixon, J., Duc, J., Ashen, D., Nabauer, M., Beuckelmann, D. J., et al. (1998). Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 98, 1383–1393.

    Google Scholar 

  17. Borlak, J., & Thum, T. (2003). Hallmarks of ion channel gene expression in end-stage heart failure. The FASEB Journal, 17, 1592–1608.

    Google Scholar 

  18. Nattel, S., Maguy, A., Le, B. S., & Yeh, Y. H. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87, 425–456.

    Google Scholar 

  19. Schlotthauer, K., & Bers, D. M. (2000). Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Circulation Research, 87, 774–780.

    Google Scholar 

  20. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1993). Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73, 379–385.

    Google Scholar 

  21. Tomaselli, G. F., & Marban, E. (1999). Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research, 42, 270–283.

    Google Scholar 

  22. Akar, F. G., Wu, R. C., Juang, G. J., Tian, Y., Burysek, M., Disilvestre, D., et al. (2005). Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2887–H2896.

    Google Scholar 

  23. Doronin, S. V., Potapova, I. A., Lu, Z., & Cohen, I. S. (2004). Angiotensin receptor type 1 forms a complex with the transient outward potassium channel Kv4.3 and regulates its gating properties and intracellular localization. Journal of Biological Chemistry, 279, 48231–48237.

    Google Scholar 

  24. Miake, J., Marban, E., & Nuss, H. B. (2002). Biological pacemaker created by gene transfer. Nature, 419, 132–133.

    ADS  Google Scholar 

  25. Cerbai, E., Pino, R., Porciatti, F., Sani, G., Toscano, M., Maccherini, M., et al. (1997). Characterization of the hyperpolarization-activated current, If, in ventricular myocytes from human failing heart. Circulation, 95, 568–571.

    Google Scholar 

  26. Hoppe, U. C., Jansen, E., Sudkamp, M., & Beuckelmann, D. J. (1998). Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation, 97, 55–65.

    Google Scholar 

  27. Zicha, S., Fernandez-Velasco, M., Lonardo, G., L’Heureux, N., & Nattel, S. (2005). Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovascular Research, 66, 472–481.

    Google Scholar 

  28. Roden, D. M. (1998). Taking the “idio” out of “idiosyncratic”: Predicting torsades de pointes. Pacing and Clinical Electrophysiology, 21, 1029–1034.

    Google Scholar 

  29. Michael, G., Xiao, L., Qi, X. Y., Dobrev, D., & Nattel, S. (2009). Remodelling of cardiac repolarization: How homeostatic responses can lead to arrhythmogenesis. Cardiovascular Research, 81, 491–499.

    Google Scholar 

  30. Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102, 1178–1185.

    Google Scholar 

  31. Chen, X., Piacentino, V., III, Furukawa, S., Goldman, B., Margulies, K. B., & Houser, S. R. (2002). L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circulation Research, 91, 517–524.

    Google Scholar 

  32. Mukherjee, R., Hewett, K. W., Walker, J. D., Basler, C. G., & Spinale, F. G. (1998). Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovascular Research, 37, 432–444.

    Google Scholar 

  33. Richard, S., Leclercq, F., Lemaire, S., Piot, C., & Nargeot, J. (1998). Ca2+ currents in compensated hypertrophy and heart failure. Cardiovascular Research, 37, 300–311.

    Google Scholar 

  34. Schröder, F., Handrock, R., Beuckelmann, D. J., Hirt, S., Hullin, R., Priebe, L., et al. (1998). Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation, 98, 969–976.

    Google Scholar 

  35. Sipido, K. R., Stankovicova, T., Flameng, W., Vanhaecke, J., & Verdonck, F. (1998). Frequency dependence of Ca2+ release from the sarcoplasmic reticulum in human ventricular myocytes from end-stage heart failure. Cardiovascular Research, 37, 478–488.

    Google Scholar 

  36. Altamirano, J., & Bers, D. M. (2007). Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293, H563–H573.

    Google Scholar 

  37. He, J. Q., Conklin, M. W., Foell, J. D., Wolff, M. R., Haworth, R. A., Coronado, R., et al. (2001). Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovascular Research, 49, 298–307.

    Google Scholar 

  38. Lyon, A. R., MacLeod, K. T., Zhang, Y., Garcia, E., Kanda, G. K., Lab, M. J., et al. (2009). Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 6854–6859.

    ADS  Google Scholar 

  39. Hong, T. T., Smyth, J. W., Chu, K. Y., Vogan, J. M., Fong, T. S., Jensen, B. C., et al. (2012). BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm, 9, 812–820.

    Google Scholar 

  40. Bito, V., Heinzel, F. R., Biesmans, L., Antoons, G., & Sipido, K. R. (2008). Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: Alterations during cardiac remodelling. Cardiovascular Research, 77, 315–324.

    Google Scholar 

  41. Studer, R., Reinecke, H., Bilger, J., Eschenhagen, T., Bohm, M., Hasenfuss, G., et al. (1994). Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circulation Research, 75, 443–453.

    Google Scholar 

  42. Reinecke, H., Studer, R., Vetter, R., Holtz, J., & Drexler, H. (1996). Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovascular Research, 31, 48–54.

    Google Scholar 

  43. Flesch, M., Schwinger, R. H., Schiffer, F., Frank, K., Sudkamp, M., Kuhn-Regnier, F., et al. (1996). Evidence for functional relevance of an enhanced expression of the Na+-Ca2+ exchanger in failing human myocardium. Circulation, 94, 992–1002.

    Google Scholar 

  44. Sipido, K. R., Volders, P. G., Vos, M. A., & Verdonck, F. (2002). Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: A new target for therapy? Cardiovascular Research, 53, 782–805.

    Google Scholar 

  45. Nass, R. D., Aiba, T., Tomaselli, G. F., & Akar, F. G. (2008). Mechanisms of disease: Ion channel remodeling in the failing ventricle. Nature Clinical Practice. Cardiovascular Medicine, 5, 196–207.

    Google Scholar 

  46. Abriel, H., & Kass, R. S. (2005). Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends in Cardiovascular Medicine, 15, 35–40.

    Google Scholar 

  47. Abriel, H. (2007). Cardiac sodium channel Nav1.5 and its associated proteins. Archives des Maladies du Coeur et des Vaisseaux, 100, 787–793.

    Google Scholar 

  48. Shibata, E. F., Brown, T., Washburn, Z., Bai, J., Revak, T., & Butters, C. (2006). Autonomic regulation of voltage-gated cardiac ion channels. Journal of Cardiovascular Electrophysiology, 17, s34–s42.

    Google Scholar 

  49. Akai, J., Makita, N., Sakurada, H., Shirai, N., Ueda, K., Kitabatake, A., et al. (2000). A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Letters, 479, 29–34.

    Google Scholar 

  50. Brugada, P., Brugada, R., & Brugada, J. (2000). The Brugada syndrome. Current Cardiology Reports, 2, 507–514.

    Google Scholar 

  51. Makiyama, T., Akao, M., Tsuji, K., Doi, T., Ohno, S., Takenaka, K., et al. (2005). High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. Journal of the American College of Cardiology, 46, 2100–2106.

    Google Scholar 

  52. Ufret-Vincenty, C. A., Baro, D. J., Lederer, W. J., Rockman, H. A., Quinones, L. E., & Santana, L. F. (2001). Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. Journal of Biological Chemistry, 276, 28197–28203.

    Google Scholar 

  53. Valdivia, C. R., Chu, W. W., Pu, J., Foell, J. D., Haworth, R. A., Wolff, M. R., et al. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38, 475–483.

    Google Scholar 

  54. Napolitano, C., Rivolta, I., & Priori, S. G. (2003). Cardiac sodium channel diseases. Clinical Chemistry and Laboratory Medicine, 41, 439–444.

    Google Scholar 

  55. Undrovinas, A. I., Maltsev, V. A., & Sabbah, H. N. (1999). Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cellular and Molecular Life Sciences, 55, 494–505.

    Google Scholar 

  56. Shimizu, W., & Antzelevitch, C. (1997). Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation, 96, 2038–2047.

    Google Scholar 

  57. Fozzard, H. A., & Hanck, D. A. (1996). Structure and function of voltage-dependent sodium channels: Comparison of brain II and cardiac isoforms. Physiological Reviews, 76, 887–926.

    Google Scholar 

  58. Gellens, M. E., George, A. L., Chen, L. Q., Chahine, M., Horn, R., Barchi, R. L., et al. (1992). Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 89, 554–558.

    ADS  Google Scholar 

  59. George, A. L., Varkony, T., Drabkin, H., Han, J., Knops, J., Finley, W., et al. (1995). Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel α-subunit gene (SCN5A) to band 3p21. Cytogenetics and Cell Genetics, 68, 67–70.

    Google Scholar 

  60. Ye, B., Valdivia, C. R., Ackerman, M. J., & Makielski, J. C. (2003). A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation. Physiological Genomics, 12, 187–193.

    Google Scholar 

  61. Antzelevitch, C. (2006). Brugada syndrome. Pacing and Clinical Electrophysiology, 29, 1130–1159.

    Google Scholar 

  62. Chung, S. K., MacCormick, J. M., McCulley, C. H., Crawford, J., Eddy, C. A., Mitchell, E. A., et al. (2007). Long QT and Brugada syndrome gene mutations in New Zealand. Heart Rhythm, 4, 1306–1314.

    Google Scholar 

  63. Otagiri, T., Kijima, K., Osawa, M., Ishii, K., Makita, N., Matoba, R., et al. (2008). Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatric Research, 64, 482–487.

    Google Scholar 

  64. Schott, J. J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T., Hulsbeek, M., et al. (1999). Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 23, 20–21.

    Google Scholar 

  65. Tan, H. L., Bink-Boelkens, M. T. E., Bezzina, C. R., Viswanathan, P. C., Beaufort-Krol, G. C. M., van Tintelen, P. J., et al. (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 409, 1043–1047.

    ADS  Google Scholar 

  66. Wang, D. W., Viswanathan, P. C., Balser, J. R., George, A. L., & Benson, D. W. (2002). Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105, 341–346.

    Google Scholar 

  67. Herfst, L. J., Potet, F., Bezzina, C. R., Groenewegen, W. A., Le Marec, H., Hoorntje, T. M., et al. (2003). Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. Journal of Molecular and Cellular Cardiology, 35, 549–557.

    Google Scholar 

  68. McNair, W. P., Ku, L., Taylor, M. R. G., Fain, P. R., Dao, D., & Wolfel, E. (2004). SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation, 110, 2163–2167.

    Google Scholar 

  69. Smits, J. P. P., Koopmann, T. T., Wilders, R., Veldkamp, M. W., Opthof, T., Bhuiyan, Z. A., et al. (2005). A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology, 38, 969–981.

    Google Scholar 

  70. Olson, T. M., Michels, V. V., Ballew, J. D., Reyna, S. P., Karst, M. L., Herron, K. J., et al. (2005). Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. Journal of the American Medical Association, 293, 447–454.

    Google Scholar 

  71. Darbar, D., Kannankeril, P. J., Donahue, B. S., Kucera, G., Stubblefield, T., Haines, J. L., et al. (2008). Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation, 117, 1927–1935.

    Google Scholar 

  72. Morganroth, J. (1987). Risk factors for the development of proarrhythmic events. The American Journal of Cardiology, 59, E32–E37.

    Google Scholar 

  73. Akhtar, M., Breithardt, G., Camm, A. J., Coumel, P., Janse, M. J., Lazzara, R., et al. (1990). CAST and beyond. Implications of the Cardiac Arrhythmia Suppression Trial. Task force of the working group on arrhythmias of the European Society of Cardiology. Circulation, 81, 1123–1127.

    Google Scholar 

  74. Moss, A. J., Zareba, W., Hall, W. J., Klein, H., Wilber, D. J., Cannom, D. S., et al. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. The New England Journal of Medicine, 346, 877–883.

    Google Scholar 

  75. Bardy, G. H., Lee, K. L., Mark, D. B., Poole, J. E., Packer, D. L., Boineau, R., et al. (2005). Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. The New England Journal of Medicine, 352, 225–237.

    Google Scholar 

  76. Bristow, M. R., Saxon, L. A., Boehmer, J., Krueger, S., Kass, D. A., De Marco, T., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350, 2140–2150.

    Google Scholar 

  77. Wit, A., Cranefield, P. F., & Hoffman, B. F. (1972). Slow conduction and reentry in the ventricular conducting system. Circulation Research, 30, 11–22.

    Google Scholar 

  78. Maguy, A., Le Bouter, S., Comtois, P., Chartier, D., Villeneuve, L., Wakili, R., et al. (2009). Ion channel subunit expression changes in cardiac Purkinje fibers. Circulation Research, 104, 1113–1122.

    Google Scholar 

  79. Zicha, S., Maltsev, V. A., Nattel, S., Sabbah, H. N., & Undrovinas, A. I. (2004). Post-transcriptional alterations in the expression of cardiac Na+ channel subunits in chronic heart failure. Journal of Molecular and Cellular Cardiology, 37, 91–100.

    Google Scholar 

  80. Murray, K. T., Hu, N., Daw, J. R., Shin, H. G., Watson, M. T., Mashburn, A. B., et al. (1997). Functional effects of protein kinase C activation on the human cardiac Na+ channel. Circulation Research, 80, 370–376.

    Google Scholar 

  81. Liu, M., Sanyal, S., Gao, G., Gurung, I. S., Zhu, X., Gaconnet, G., et al. (2009). Cardiac Na+ current regulation by pyridine nucleotides. Circulation Research, 105, 737–745.

    Google Scholar 

  82. Pu, J., & Boyden, P. A. (1997). Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart: A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circulation Research, 81, 110–119.

    Google Scholar 

  83. Baba, S., Dun, W., & Boyden, P. A. (2004). Can PKA activators rescue Na+ channel function in epicardial border zone cells that survive in the infarcted canine heart? Cardiovascular Research, 64, 260–267.

    Google Scholar 

  84. Choudhary, G., & Dudley, S. C., Jr. (2002). Heart failure, oxidative stress, and ion channel modulation. Congestive Heart Failure, 8, 148–155.

    Google Scholar 

  85. Pillai, J. B., Isbatan, A., Si, I., & Gupta, M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. Journal of Biological Chemistry, 280, 43121–43130.

    Google Scholar 

  86. Dzhanashiya, P. K., Vladytskaya, O. V., & Salibegashvili, N. V. (2004). Efficiency and mechanisms of the antioxidant effect of standard therapy and refracterin in the treatment of chronic heart failure in elderly patients with postinfarction cardiosclerosis. Bulletin of Experimental Biology and Medicine, 138, 412–414.

    Google Scholar 

  87. Shang, L. L., Pfahnl, A. E., Sanyal, S., Jiao, Z., Allen, J., Banach, K., et al. (2007). Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circulation Research, 101, 1146–1154.

    Google Scholar 

  88. Makielski, J. C., & Farley, A. (2006). Na+ current in human ventricle: Implications for sodium loading and homeostasis. Journal of Cardiovascular Electrophysiology, 17, S15–S20.

    Google Scholar 

  89. London, B., Michalec, M., Mehdi, H., Zhu, X., Kerchner, L., Sanyal, S., et al. (2007). Mutation in glycerol-3-phosphate dehydrogenase 1-like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation, 116, 2260–2268.

    Google Scholar 

  90. Van Norstrand, D. W., Valdivia, C. R., Tester, D. J., Ueda, K., London, B., Makielski, J. C., et al. (2007). Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation, 116, 2253–2259.

    Google Scholar 

  91. Liu, M., Liu, H., & Dudley, S. C., Jr. (2010). Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circulation Research, 107, 967–974.

    Google Scholar 

  92. Liu, M., Gu, L., Sulkin, M. S., Liu, H., Jeong, E. M., Greener, I., et al. (2013). Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 54, 25–34.

    Google Scholar 

  93. Ajiro, Y., Hagiwara, N., & Kasanuki, H. (2005). Assessment of markers for idendifying patients at risk for life-threntening arrhythmic events in Brugada syndrome. Journal of Cardiovascular Electrophysiology, 16, 45–51.

    Google Scholar 

  94. Remme, C. A., & Bezzina, C. R. (2010). Sodium channel (dys)function and cardiac arrhythmias. Cardiovascular Therapeutics, 28, 287–294.

    Google Scholar 

  95. Amin, A., Asghari-Roodsari, A., & Tan, H. (2010). Cardiac sodium channelopathies. Pflügers Archiv: European Journal of Physiology, 460, 223–237.

    Google Scholar 

  96. Nguyen, T. P., Wang, D. W., Rhodes, T. H., & George, A. L. (2008). Divergent biophysical defects caused by mutant sodium channels in dilated cardiomyopathy with arrhythmia. Circulation Research, 102, 364–371.

    Google Scholar 

  97. Gintant, G. A., Datyner, N. B., & Cohen, I. S. (1984). Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers. Biophysical Journal, 45, 509–512.

    ADS  Google Scholar 

  98. Carmeliet, E. (1987). Slow inactivation of the sodium current in rabbit cardiac Purkinje fibres. Pflügers Archiv: European Journal of Physiology, 408, 18–26.

    Google Scholar 

  99. Maltsev, V. A., Sabbah, H. N., Higgins, R. S., Silverman, N., Lesch, M., & Undrovinas, A. I. (1998). Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation, 98, 2545–2552.

    Google Scholar 

  100. Maltsev, V. A., Kyle, J. W., Mishra, S., & Undrovinas, A. (2008). Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Nav1.5 antisense inhibition. American Journal of Physiology. Heart and Circulatory Physiology, 295, H667–H676.

    Google Scholar 

  101. Surawicz, B. (1989). Electrophysiologic substrate of torsade de pointes: Dispersion of repolarization or early afterdepolarizations? Journal of the American College of Cardiology, 14, 172–184.

    Google Scholar 

  102. Cranefield, P. F., & Aronson, R. S. (1991). Torsades de pointes and early afterdepolarizations. Cardiovascular Drugs and Therapy, 5, 531–537.

    Google Scholar 

  103. Ming, Z., Aronson, R., & Nordin, C. (1994). Mechanism of current-induced early afterdepolarizations in guinea pig ventricular myocytes. American Journal of Physiology, 267, H1419–H1428.

    Google Scholar 

  104. Wingo, T. L., Shah, V. N., Anderson, M. E., Lybrand, T. P., Chazin, W. J., & Balser, J. R. (2004). An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability. Nature Structural and Molecular Biology, 11, 219–225.

    Google Scholar 

  105. Mori, M., Konno, T., Ozawa, T., Murata, M., Imoto, K., & Nagayama, K. (2000). Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: Does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry, 39, 1316–1323.

    Google Scholar 

  106. O’Rourke, B. (2000). Pathophysiological and protective roles of mitochondrial ion channels. The Journal of Physiology, 529, 23–36.

    Google Scholar 

  107. Glaaser, I. W., & Clancy, C. E. (2006). Cardiac Na+ channels as therapeutic targets for antiarrhythmic agents. Handbook of Experimental Pharmacology, 171, 99–121.

    Google Scholar 

  108. Beck, H. (2007). Plasticity of antiepileptic drug targets. Epilepsia, 48, 14–18.

    Google Scholar 

  109. Wood, J., & Boorman, J. (2005). Voltage-gated sodium chanel blockers; target validation and therapeutic potential. Current Topics in Medicinal Chemistry, 5, 529–537.

    Google Scholar 

  110. Roger, S., Rollin, J., Barascu, A., Besson, P., Raynal, P. I., Iochmann, S., et al. (2007). Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. International Journal of Biochemistry and Cell Biology, 39, 774–786.

    Google Scholar 

  111. Maltsev, V. A., Sabbah, H. N., & Undrovinas, A. I. (2002). Down-regulation of sodium current in chronic heart failure: Effect of long-term therapy with carvedilol. Cellular and Molecular Life Sciences, 59, 1561–1568.

    Google Scholar 

  112. Bezzina, C. R., Rook, M. B., & Wilde, A. A. M. (2001). Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovascular Research, 49, 257–271.

    Google Scholar 

  113. Antzelevitch, C., Brugada, P., Brugada, J., Brugada, R., Shimizu, W., Gussak, I., et al. (2002). Brugada syndrome: A decade of progress. Circulation Research, 91, 1114–1118.

    Google Scholar 

  114. Delisle, B. P., Anson, B. D., Rajamani, S., & January, C. T. (2004). Biology of cardiac arrhythmias: Ion channel protein trafficking. Circulation Research, 94, 1418–1428.

    Google Scholar 

  115. Wu, G., Ai, T., Kim, J., Mohapatra, B., Xi, Y., Li, Z., et al. (2008). α-1-syndrophin mutation and the long-QT syndrome: A disease of sodium channel disruption. Circulation. Arrhythmia and Electrophysiology, 1, 193–201.

    Google Scholar 

  116. Kramer, D., & Zimetbaum, P. (2011). Long-QT syndrome. Cardiology in Review, 19, 217–225.

    Google Scholar 

  117. Valdivia, C. R., Tester, D. J., Rok, B. A., Porter, C. B., Munger, T. M., Jahangir, A., et al. (2004). A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovascular Research, 62, 53–62.

    Google Scholar 

  118. Klein, L., O’Connor, C. M., Gattis, W. A., Zampino, M., de Luca, L., Vitarelli, A., et al. (2003). Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: Review of trials and practical considerations. The American Journal of Cardiology, 91, 18–40.

    Google Scholar 

  119. Baroudi, G., Pouliot, V., Denjoy, I., Guicheney, P., Shrier, A., & Chahine, M. (2001). Novel mechanism for Brugada syndrome: Defective surface localization of an SCN5A mutant (R1432G). Circulation Research, 88, e78–e83.

    Google Scholar 

  120. Simonis, G., Briem, S., Schoen, S., Bock, M., Marquetant, R., & Strasser, R. (2007). Protein kinase C in the human heart: Differential regulation of the isoforms in aortic stenosis or dilated cardiomyopathy. Molecular and Cellular Biochemistry, 305, 103–111.

    Google Scholar 

  121. Bowling, N., Walsh, R. A., Song, G., Estridge, T., Sandusky, G. E., Fouts, R. L., et al. (1999). Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation, 99, 384–391.

    Google Scholar 

  122. Gu, X., & Bishop, S. P. (1994). Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circulation Research, 75, 926–931.

    Google Scholar 

  123. Braun, M. U., LaRosée, P., Schön, S., Borst, M. M., & Strasser, R. H. (2002). Differential regulation of cardiac protein kinase C isozyme expression after aortic banding in rat. Cardiovascular Research, 56, 52–63.

    Google Scholar 

  124. Dong, X., Sumandea, C. A., Chen, Y. C., Garcia-Cazarin, M. L., Zhang, J., Balke, C. W., et al. (2012). Augmented phosphorylation of cardiac troponin I in hypertensive heart failure. Journal of Biological Chemistry, 287, 848–857.

    Google Scholar 

  125. Hahn, H. S., Marreez, Y., Odley, A., Sterbling, A., Yussman, M. G., Hilty, K. C., et al. (2003). Protein Kinase Cα negatively regulates systolic and diastolic function in pathological hypertrophy. Circulation Research, 93, 1111–1119.

    Google Scholar 

  126. Hallaq, H., Wang, D. W., Kunic, J. D., George, A. L., Wells, K. S., & Murray, K. T. (2012). Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. American Journal of Physiology. Heart and Circulatory Physiology, 302, H782–H789.

    Google Scholar 

  127. Liu, M., Lardin, H. A., Kass, R. S., & Dudley, S. C., Jr. (2012). The role of channel PKA/PKC sites in metabolic regulation of the cardiac Na+ channels. Biophysical Journal, 102, 527a.

    ADS  Google Scholar 

  128. Zheng, M., Wang, Y., Kang, L., Shimaoka, T., Marni, F., & Ono, K. (2010). Intracellular Ca2+- and PKC-dependent upregulation of T-type Ca2+ channels in LPC-stimulated cardiomyocytes. Journal of Molecular and Cellular Cardiology, 48, 131–139.

    Google Scholar 

  129. Scholz, E. P., Welke, F., Joss, N., Seyler, C., Zhang, W., Scherer, D., et al. (2011). Central role of PKCα in isoenzyme-selective regulation of cardiac transient outward current Ito and Kv4.3 channels. Journal of Molecular and Cellular Cardiology, 51, 722–729.

    Google Scholar 

  130. Bogoyevitch, M. A., Parker, P. J., & Sugden, P. H. (1993). Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-ε is a major isotype present, and it is activated by phorbol esters, epinephrine, and endothelin. Circulation Research, 72, 757–767.

    Google Scholar 

  131. Wakasaki, H., Koya, D., Schoen, F. J., Jirousek, M. R., Ways, D. K., Hoit, B. D., et al. (1997). Targeted overexpression of protein kinase C β2 isoform in myocardium causes cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 94, 9320–9325.

    ADS  Google Scholar 

  132. Inagaki, K., Iwanaga, Y., Sarai, N., Onozawa, Y., Takenaka, H., Mochly-Rosen, D., et al. (2002). Tissue angiotensin II during progression or ventricular hypertrophy to heart failure in hypertensive rats; differential effects on PKCε and PKCβ. Journal of Molecular and Cellular Cardiology, 34, 1377–1385.

    Google Scholar 

  133. Liu, Q., Chen, X., MacDonnell, S. M., Kranias, E. G., Lorenz, J. N., Leitges, M., et al. (2009). Protein kinase Cα, but Not PKCβ or PKCγ, regulates contractility and heart failure susceptibility. Circulation Research, 105, 194–200.

    Google Scholar 

  134. Jeong, D., Cha, H., Kim, E., Kang, M., Yang, D. K., Kim, J. M., et al. (2006). PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circulation Research, 99, 307–314.

    Google Scholar 

  135. Duquesnes, N., Lezoualc’h, F., & Crozatier, B. (2011). PKC-δ and PKC-ε: Foes of the same family or strangers? Journal of Molecular and Cellular Cardiology, 51, 665–673.

    Google Scholar 

  136. Ferreira, J. C. B., Brum, P. C., & Mochly-Rosen, D. (2011). βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 51, 479–484.

    Google Scholar 

  137. Braun, M. U., LaRosee, P., Simonis, G., Borst, M. M., & Strasser, R. H. (2004). Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy. Molecular and Cellular Biochemistry, 262, 135–143.

    Google Scholar 

  138. Takeishi, Y., Bhagwat, A., Ball, N. A., Kirkpatrick, D. L., Periasamy, M., & Walsh, R. A. (1999). Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 276, H53–H62.

    Google Scholar 

  139. Rouet-Benzineb, P., Mohammadi, K., Pérennec, J., Poyard, M., El Houda Bouanani, N., & Crozatier, B. (1996). Protein kinase C isoform expression in normal and failing rabbit hearts. Circulation Research, 79, 153–161.

    Google Scholar 

  140. Horiuchi-Hirose, M., Kashihara, T., Nakada, T., Kurebayashi, N., Shimojo, H., Shibazaki, T., et al. (2011). Decrease in the density of t-tubular L-type Ca2+ channel currents in failing ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 300, H978–H988.

    Google Scholar 

  141. Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation Research, 87, 1095–1102.

    Google Scholar 

  142. Hulme, J. T., Lin, T. W. C., Westenbroek, R. E., Scheuer, T., & Catterall, W. A. (2003). β-Adrenergic regulation requires direct anchoring of PKA to cardiac Cav1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proceedings of the National Academy of Sciences of the United States of America, 100, 13093–13098.

    ADS  Google Scholar 

  143. Wei, S., Ruknudin, A., Hanlon, S. U., McCurley, J. M., Schulze, D. H., & Haigney, M. C. P. (2003). Protein kinase A hyperphosphorylation increases basal current but decreases β-adrenergic responsiveness of the sarcolemmal Na+-Ca2+ exchanger in failing pig myocytes. Circulation Research, 92, 897–903.

    Google Scholar 

  144. Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell, 101, 365–376.

    Google Scholar 

  145. Reiken, S., Gaburjakova, M., Gaburjakova, J., He, K. L., Prieto, A., Becker, E., et al. (2001). β-Adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation, 104, 2843–2848.

    Google Scholar 

  146. Reiken, S., Gaburjakova, M., Guatimosim, S., Gomez, A. M., D’Armiento, J., Burkhoff, D., et al. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Journal of Biological Chemistry, 278, 444–453.

    Google Scholar 

  147. Murphy, B., Rogers, J., Perdichizzi, A., Colvin, A., & Catterall, W. (1996). cAMP-dependent phosphorylation of two sites in the α subunit of the cardiac sodium channel. Journal of Biological Chemistry, 271, 28837–28843.

    Google Scholar 

  148. Zhou, J., Yi, J., Hu, N., George, A. L., Jr., & Murray, K. T. (2000). Activation of protein kinase A modulates trafficking of the human cardiac sodium channel in Xenopus oocytes. Circulation Research, 87, 33–38.

    Google Scholar 

  149. Liu, M., Liu, H., Jeong, E. M., Gu, L., & Dudley, S. C., Jr. (2011). Mitochondrial regulation of the cardiac Na+ channel of 6-week DOCA mouse ventricular myocytes. Heart Rhythm, 8, 1819–1820.

    Google Scholar 

  150. Ferrier, G., Zhu, J., Redondo, I., & Howlett, S. (1998). Role of cAMP-dependent protein kinase A in activation of a voltage-sensitive release mechanism for cardiac contraction in guinea-pig myocytes. The Journal of Physiology, 513, 185–201.

    Google Scholar 

  151. Kwak, Y. G., Hu, N., Wei, J., George, A. L., Grobaski, T. D., Tamkun, M. M., et al. (1999). Protein kinase A phosphorylation alters Kvβ1.3 subunit-mediated inactivation of the Kv1.5 potassium channel. Journal of Biological Chemistry, 274, 13928–13932.

    Google Scholar 

  152. Feliciello, A., Gottesman, M. E., & Avvedimento, E. V. (2001). The biological functions of A-kinase anchor proteins. Journal of Molecular Biology, 308, 99–114.

    Google Scholar 

  153. Zakhary, D. R., Moravec, C. S., & Bond, M. (2000). Regulation of PKA binding to AKAPs in the heart. Circulation, 101, 1459–1464.

    Google Scholar 

  154. Maxwell, S. (2000). Coronary artery disease—free radical damage, antioxidant protection and the role of homocysyteine. Basic Research in Cardiology, 95, I65–I71.

    Google Scholar 

  155. Hill, M. F., & Singal, P. K. (1997). Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation, 96, 2414–2420.

    Google Scholar 

  156. Dhalla, A. K., & Singal, P. K. (1994). Antioxidant changes in hypertrophied and failing guinea pig hearts. American Journal of Physiology. Heart and Circulatory Physiology, 266, H1280–H1285.

    Google Scholar 

  157. Zhang, Y., Janssens, S. P., Wingler, K., Schmidt, H. H. H. W., & Moens, A. L. (2011). Modulating endothelial nitric oxide synthase: A new cardiovascular therapeutic strategy. American Journal of Physiology. Heart and Circulatory Physiology, 301, H634–H646.

    Google Scholar 

  158. Umar, S., & van der Laarse, A. (2010). Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Molecular and Cellular Biochemistry, 333, 191–201.

    Google Scholar 

  159. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S., et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111, 1201–1209.

    Google Scholar 

  160. Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86, 494–501.

    Google Scholar 

  161. Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., et al. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of the American College of Cardiology, 41, 2164–2171.

    Google Scholar 

  162. Maack, C., Kartes, T., Kilter, H., Schäfers, H. J., Nickenig, G., Böhm, M., et al. (2003). Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target for statin treatment. Circulation, 108, 1567–1574.

    Google Scholar 

  163. Dworakowski, R., Walker, S., Momin, A., Desai, J., El-Gamel, A., Wendler, O., et al. (2008). Reduced nicotinamide adenine dinucleotide phosphate oxidase-derived superoxide and vascular endothelial dysfunction in human heart failure. Journal of the American College of Cardiology, 51, 1349–1356.

    Google Scholar 

  164. Li, J. M., Gall, N. P., Grieve, D. J., Chen, M., & Shah, A. M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension, 40, 477–484.

    Google Scholar 

  165. Cappola, T. P., Kass, D. A., Nelson, G. S., Berger, R. D., Rosas, G. O., Kobeissi, Z. A., et al. (2001). Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation, 104, 2407–2411.

    Google Scholar 

  166. Leyva, F., Anker, S. D., Godsland, I. F., Teixeira, M., Hellewell, P. G., Kox, W. J., et al. (1998). Uric acid in chronic heart failure: A marker of chronic inflammation. European Heart Journal, 19, 1814–1822.

    Google Scholar 

  167. Ferdinandy, P., Danial, H., Ambrus, I., Rothery, R. A., & Schulz, R. (2000). Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circulation Research, 87, 241–247.

    Google Scholar 

  168. Shang, L. L., Sanyal, S., Pfahnl, A. E., Jiao, Z., Allen, J., Liu, H., et al. (2008). NF-κB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. American Journal of Physiology. Cell Physiology, 294, C372–C379.

    Google Scholar 

  169. Wagner, S., Ruff, H. M., Weber, S. L., Bellmann, S., Sowa, T., Schulte, T., et al. (2011). Reactive oxygen species—activated Ca/calmodulin kinase IIδ is required for late INa augmentation leading to cellular Na and Ca overload. Circulation Research, 108, 555–565.

    Google Scholar 

  170. Wu, Y., Temple, J., Zhang, R., Dzhura, I., Zhang, W., Trimble, R., et al. (2002). Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation, 106, 1288–1293.

    Google Scholar 

  171. Morita, N., Sovari, A. A., Xie, Y., Fishbein, M. C., Mandel, W. J., Garfinkel, A., et al. (2009). Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1594–H1605.

    Google Scholar 

  172. Zhang, Y., Xiao, J., Wang, H., Luo, X., Wang, J., Villeneuve, L. R., et al. (2006). Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1446–H1455.

    Google Scholar 

  173. Gao, L., Li, Y., Schultz, H. D., Wang, W. Z., Wang, W., Finch, M., et al. (2010). Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 298, H945–H955.

    Google Scholar 

  174. Bérubé, J., Caouette, D., & Daleau, P. (2001). Hydrogen peroxide modifies the kinetics of HERG channel expressed in a mammalian cell line. Journal of Pharmacology and Experimental Therapeutics, 297, 96–102.

    Google Scholar 

  175. Gomez, R., Caballero, R., Barana, A., Amoros, I., Calvo, E., Lopez, J. A., et al. (2009). Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circulation Research, 105, 383–392.

    Google Scholar 

  176. Lederer, W. J., Nichols, C. G., & Smith, G. L. (1989). The mechanism of early contractile failure of isolated rat ventricular myocytes subjected to complete metabolic inhibition. The Journal of Physiology, 413, 329–349.

    Google Scholar 

  177. Goldhaber, J. I., Parker, J. M., & Weiss, J. N. (1991). Mechanisms of excitation-contraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes. The Journal of Physiology, 443, 371–386.

    Google Scholar 

  178. Losito, V. A., Tsushima, R. G., Diaz, R. J., Wilson, G. J., & Backx, P. H. (1998). Preferential regulation of rabbit cardiac L-type Ca2+ current by glycolytic derived ATP via a direct allosteric pathway. The Journal of Physiology, 511(Pt 1), 67–78.

    Google Scholar 

  179. Hool, L. C. (2000). Hypoxia increases the sensitivity of the L-type Ca2+ current to β-adrenergic receptor stimulation via a C2 region-containing protein kinase C isoform. Circulation Research, 87, 1164–1171.

    Google Scholar 

  180. Chantawansri, C., Huynh, N., Yamanaka, J., Garfinkel, A., Lamp, S. T., Inoue, M., et al. (2008). Effect of metabolic inhibition on couplon behavior in rabbit ventricular myocytes. Biophysical Journal, 94, 1656–1666.

    ADS  Google Scholar 

  181. Takahashi, T., Allen, P. D., Lacro, R. V., Marks, A. R., Dennis, A. R., Schoen, F. J., et al. (1992). Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. The Journal of Clinical Investigation, 90, 927–935.

    Google Scholar 

  182. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1992). Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 85, 1046–1055.

    Google Scholar 

  183. Mewes, T., & Ravens, U. (1994). L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. Journal of Molecular and Cellular Cardiology, 26, 1307–1320.

    Google Scholar 

  184. Campbell, D. L., Stamler, J. S., & Strauss, H. C. (1996). Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. Journal of General Physiology, 108, 277–293.

    Google Scholar 

  185. Van der Heiden, K., Cuhlmann, S., Luong, L. A., Zakkar, M., & Evans, P. C. (2010). Role of nuclear factor κB in cardiovascular health and disease. Clinical Science, 118, 593–605.

    Google Scholar 

  186. Li, Y., Ha, T., Gao, X., Kelley, J., Williams, D. L., Browder, I. W., et al. (2004). NF-κB activation is required for the development of cardiac hypertrophy in vivo. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1712–H1720.

    Google Scholar 

  187. Zelarayan, L., Renger, A., Noack, C., Zafiriou, M. P., Gehrke, C., van der Nagel, R., et al. (2009). NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovascular Research, 84, 416–424.

    Google Scholar 

  188. Saito, T., & Giaid, A. (1999). Cyclooxygenase-2 and nuclear factor-κB in myocardium of end stage human heart failure. Congestive Heart Failure, 5, 222–227.

    Google Scholar 

  189. Frantz, S., Fraccarollo, D., Wagner, H., Behr, T. M., Jung, P., Angermann, C. E., et al. (2003). Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovascular Research, 57, 749–756.

    Google Scholar 

  190. Gupta, S., & Sen, S. (2005). Role of the NF-κB signaling cascade and NF-κB-targeted genes in failing human hearts. Journal of Molecular Medicine, 83, 993–1004.

    Google Scholar 

  191. Grabellus, F., Levkau, B., Sokoll, A., Welp, H., Schmid, C., Deng, M. C., et al. (2002). Reversible activation of nuclear factor-κB in human end-stage heart failure after left ventricular mechanical support. Cardiovascular Research, 53, 124–130.

    Google Scholar 

  192. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J., & Neckers, L. (2003). IL-1β mediated up-regulation of HIF-1α via an NFkB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. The FASEB Journal, 17, 2115–2117.

    Google Scholar 

  193. Zhou, A., Ou, A. C., Cho, A., Benz, E. J., Jr., & Huang, S. C. (2008). Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5′ splice site selection. Molecular and Cellular Biology, 28, 5924–5936.

    Google Scholar 

  194. Gao, G., Xie, A., Huang, S. C., Zhou, A., Zhang, J., Herman, A. M., et al. (2011). Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure/clinical perspective. Circulation, 124, 1124–1131.

    Google Scholar 

  195. Lopshire, J. C., & Zipes, D. P. (2006). Sudden cardiac death: Better understanding of risks, mechanisms, and treatment. Circulation, 114, 1134–1136.

    Google Scholar 

  196. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. (1989). Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. The New England Journal of Medicine, 321, 406–412.

    Google Scholar 

  197. Waldo, A. L., Camm, A. J., de Ruyter, H., Friedman, P. L., MacNeil, D. J., Pauls, J. F., et al. (1996). Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival with oral d-Sotalol. Lancet, 348, 7–12.

    Google Scholar 

  198. Connolly, S. J., Hallstrom, A. P., Cappato, R., Schron, E. B., Kuck, K. H., Zipes, D. P., et al. (2000). Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs implantable defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. European Heart Journal, 21, 2071–2078.

    Google Scholar 

  199. Moss, A. J., Hall, W. J., Cannom, D. S., Daubert, J. P., Higgins, S. L., Klein, H., et al. (1996). Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. The New England Journal of Medicine, 335, 1933–1940.

    Google Scholar 

  200. Echt, D. S., Liebson, P. R., Mitchell, L. B., Peters, R. W., Obias-Manno, D., Barker, A. H., et al. (1991). Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. The New England Journal of Medicine, 324, 781–788.

    Google Scholar 

  201. Noujaim, S. F., Pandit, S. V., Berenfeld, O., Vikstrom, K., Cerrone, M., Mironov, S., et al. (2007). Up-regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors. The Journal of Physiology, 578, 315–326.

    Google Scholar 

  202. Nuss, H. B., Johns, D. C., Kaab, S., Tomaselli, G. F., Kass, D., Lawrence, J. H., et al. (1996). Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: A prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Therapy, 3, 900–912.

    Google Scholar 

  203. Ennis, I. L., Li, R. A., Murphy, A. M., Marban, E., & Nuss, H. B. (2002). Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. The Journal of Clinical Investigation, 109, 393–400.

    Google Scholar 

  204. Hale, S. L., Shryock, J. C., Belardinelli, L., Sweeney, M., & Kloner, R. A. (2008). Late sodium current inhibition as a new cardioprotective approach. Journal of Molecular and Cellular Cardiology, 44, 954–967.

    Google Scholar 

  205. Burashnikov, A., Di Diego, J. M., Zygmunt, A. C., Belardinelli, L., & Antzelevitch, C. (2007). Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: Differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation, 116, 1449–1457.

    Google Scholar 

  206. Wang, W. Q., Robertson, C., Dhalla, A. K., & Belardinelli, L. (2008). Antitorsadogenic effects of (±)-N-(2,6-dimethyl-phenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-pipera zine (ranolazine) in anesthetized rabbits. Journal of Pharmacology and Experimental Therapeutics, 325, 875–881.

    Google Scholar 

  207. Scirica, B. M., Morrow, D. A., Hod, H., Murphy, S. A., Belardinelli, L., Hedgepeth, C. M., et al. (2007). Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: Results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation, 116, 1647–1652.

    Google Scholar 

  208. Murdock, D. K., Kaliebe, J., & Overton, N. (2008). Ranolozine-induced suppression of ventricular tachycardia in a patient with nonischemic cardiomyopathy: A case report. Pacing and Clinical Electrophysiology, 31, 765–768.

    Google Scholar 

  209. Fredj, S., Sampson, K. J., Liu, H., & Kass, R. S. (2006). Molecular basis of ranolazine block of LQT-3 mutant sodium channels: Evidence for site of action. British Journal of Pharmacology, 148, 16–24.

    Google Scholar 

  210. Wang, G. K., Calderon, J., & Wang, S. Y. (2008). State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine. Molecular Pharmacology, 73, 940–948.

    Google Scholar 

  211. Beyder, A., Strege, P. R., Reyes, S., Bernard, C. E., Terzic, A., Makielski, J., et al. (2012). Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Nav1.5: A novel mechanism of drug action. Circulation, 125, 2698–2706.

    Google Scholar 

  212. Zhou, J., Augelli-Szafran, C. E., Bradley, J. A., Chen, X., Koci, B. J., Volberg, W. A., et al. (2005). Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Molecular Pharmacology, 68, 876–884.

    Google Scholar 

  213. Nagy, Z. A., Virag, L., Toth, A., Biliczki, P., Acsai, K., Banyasz, T., et al. (2004). Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart. British Journal of Pharmacology, 143, 827–831.

    Google Scholar 

  214. Gheorghiade, M., Teerlink, J. R., & Mebazaa, A. (2005). Pharmacology of new agents for acute heart failure syndromes. The American Journal of Cardiology, 96, 68G–73G.

    Google Scholar 

  215. Matsumoto, Y., Aihara, H., Yamauchi-Kohno, R., Reien, Y., Ogura, T., Yabana, H., et al. (2002). Long-term endothelin a receptor blockade inhibits electrical remodeling in cardiomyopathic hamsters. Circulation, 106, 613–619.

    Google Scholar 

  216. Samie, F. H., Mandapati, R., Gray, R. A., Watanabe, Y., Zuur, C., Beaumont, J., et al. (2000). A mechanism of transition from ventricular fibrillation to tachycardia: Effect of calcium channel blockade on the dynamics of rotating waves. Circulation Research, 86, 684–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel C. Dudley Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, M., Brahmanandam, V.M., Dudley, S.C. (2013). Biophysics of Membrane Currents in Heart Failure. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_4

Download citation

Publish with us

Policies and ethics