Skip to main content

Sarcomeres and the Biophysics of Heart Failure

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Changes in the function of the sarcomere play a significant role in the development of cardiac dysfunction underlying heart failure. These changes in sarcomeric properties are the result of either alterations in isoform expression, post-translational modification of the sarcomeric proteins, or gene mutations linked to hypertrophic or dilated cardiomyopathy. These alterations act to modulate the contractile state of the heart via direct effects on the biophysical properties of the cardiac sarcomere. Coupling a deeper understanding of the primary biophysical causes of changes in contractile function to a more complete understanding of the resultant pathogenic ventricular remodeling that occurs over time will allow for both significant advances in disease management and new points of therapeutic intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alpert, N. R., & Gordon, M. S. (1962). Myofibrillar adenosine triphosphatase activity in congestive heart failure. American Journal of Physiology, 202, 940–946.

    Google Scholar 

  2. Anderson, P. A., Malouf, N. N., Oakeley, A. E., Pagani, E. D., & Allen, P. D. (1991). Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circulation Research, 69, 1226–1233.

    Google Scholar 

  3. Avner, B. S., Shioura, K. M., Scruggs, S. B., Grachoff, M., Geenen, D. L., Helseth, D. L., Jr., et al. (2012). Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Molecular and Cellular Biochemistry, 363, 203–215.

    Google Scholar 

  4. Barton, P. J., Felkin, L. E., Koban, M. U., Cullen, M. E., Brand, N. J., & Dhoot, G. K. (2004). The slow skeletal muscle troponin T gene is expressed in developing and diseased human heart. Molecular and Cellular Biochemistry, 263, 91–97.

    Google Scholar 

  5. Belin, R. J., Sumandea, M. P., Allen, E. J., Schoenfelt, K., Wang, H., Solaro, R. J., et al. (2007). Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure. Circulation Research, 101, 195–204.

    Google Scholar 

  6. Boheler, K. R., Carrier, L., de la Bastie, D., Allen, P. D., Komajda, M., Mercadier, J. J., et al. (1991). Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. The Journal of Clinical Investigation, 88, 323–330.

    Google Scholar 

  7. Borbely, A., Falcao-Pires, I., van Heerebeek, L., Hamdani, N., Edes, I., Gavina, C., et al. (2009). Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circulation Research, 104, 780–786.

    Google Scholar 

  8. Bouvagnet, P., Mairhofer, H., Leger, J. O., Puech, P., & Leger, J. J. (1989). Distribution pattern of alpha and beta myosin in normal and diseased human ventricular myocardium. Basic Research in Cardiology, 84, 91–102.

    Google Scholar 

  9. Bowling, N., Walsh, R. A., Song, G., Estridge, T., Sandusky, G. E., Fouts, R. L., et al. (1999). Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation, 99, 384–391.

    Google Scholar 

  10. Bristow, M. R., Ginsburg, R., Minobe, W., Cubicciotti, R. S., Sageman, W. S., Lurie, K., et al. (1982). Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. The New England Journal of Medicine, 307, 205–211.

    Google Scholar 

  11. Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., et al. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59, 297–309.

    Google Scholar 

  12. Brodde, O. E., Schuler, S., Kretsch, R., Brinkmann, M., Borst, H. G., Hetzer, R., et al. (1986). Regional distribution of beta-adrenoceptors in the human heart: Coexistence of functional beta 1- and beta 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. Journal of Cardiovascular Pharmacology, 8, 1235–1242.

    Google Scholar 

  13. Buck, S. H., Konyn, P. J., Palermo, J., Robbins, J., & Moss, R. L. (1999). Altered kinetics of contraction of mouse atrial myocytes expressing ventricular myosin regulatory light chain. American Journal of Physiology, 276, H1167–H1171.

    Google Scholar 

  14. Burkart, E. M., Sumandea, M. P., Kobayashi, T., Nili, M., Martin, A. F., Homsher, E., et al. (2003). Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. Journal of Biological Chemistry, 278, 11265–11272.

    Google Scholar 

  15. Canton, M., Menazza, S., Sheeran, F. L., Polverino de Laureto, P., Di Lisa, F., & Pepe, S. (2011). Oxidation of myofibrillar proteins in human heart failure. Journal of the American College of Cardiology, 57, 300–309.

    Google Scholar 

  16. Canton, M., Neverova, I., Menabo, R., Van Eyk, J., & Di Lisa, F. (2004). Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 286, H870–H877.

    Google Scholar 

  17. Canton, M., Skyschally, A., Menabo, R., Boengler, K., Gres, P., Schulz, R., et al. (2006). Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. European Heart Journal, 27, 875–881.

    Google Scholar 

  18. Colantonio, D. A., Van Eyk, J. E., & Przyklenk, K. (2004). Stunned peri-infarct canine myocardium is characterized by degradation of troponin T, not troponin I. Cardiovascular Research, 63, 217–225.

    Google Scholar 

  19. Copeland, O., Nowak, K. J., Laing, N. G., Ravenscroft, G., Messer, A. E., Bayliss, C. R., et al. (2010). Investigation of changes in skeletal muscle alpha-actin expression in normal and pathological human and mouse hearts. Journal of Muscle Research and Cell Motility, 31, 207–214.

    Google Scholar 

  20. Copeland, O., Sadayappan, S., Messer, A. E., Steinen, G. J., van der Velden, J., & Marston, S. B. (2010). Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle. Journal of Molecular and Cellular Cardiology, 49, 1003–1011.

    Google Scholar 

  21. Craig, R., & Lehman, W. (2001). Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. Journal of Molecular Biology, 311, 1027–1036.

    Google Scholar 

  22. Crosbie, R. H., Miller, C., Cheung, P., Goodnight, T., Muhlrad, A., & Reisler, E. (1994). Structural connectivity in actin: Effect of C-terminal modifications on the properties of actin. Biophysical Journal, 67, 1957–1964.

    ADS  Google Scholar 

  23. Decker, R. S., Decker, M. L., Kulikovskaya, I., Nakamura, S., Lee, D. C., Harris, K., et al. (2005). Myosin-binding protein C phosphorylation, myofibril structure, and contractile function during low-flow ischemia. Circulation, 111, 906–912.

    Google Scholar 

  24. Denz, C. R., Narshi, A., Zajdel, R. W., & Dube, D. K. (2004). Expression of a novel cardiac-specific tropomyosin isoform in humans. Biochemical and Biophysical Research Communications, 320, 1291–1297.

    Google Scholar 

  25. Fitzsimons, D. P., Patel, J. R., & Moss, R. L. (1998). Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium. The Journal of Physiology, 513(Pt 1), 171–183.

    Google Scholar 

  26. Frey, N., Luedde, M., & Katus, H. A. (2012). Mechanisms of disease: Hypertrophic cardiomyopathy. Nature Reviews Cardiology, 9, 91–100.

    Google Scholar 

  27. Gomes, A. V., Guzman, G., Zhao, J., & Potter, J. D. (2002). Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart. Journal of Biological Chemistry, 277, 35341–35349.

    Google Scholar 

  28. Gomes, A. V., Venkatraman, G., Davis, J. P., Tikunova, S. B., Engel, P., Solaro, R. J., et al. (2004). Cardiac troponin T isoforms affect the Ca2+ sensitivity of force development in the presence of slow skeletal troponin I—Insights into the role of troponin T isoforms in the fetal heart. Journal of Biological Chemistry, 279, 49579–49587.

    Google Scholar 

  29. Granzier, H., & Labeit, S. (2002). Cardiac titin: An adjustable multi-functional spring. The Journal of Physiology, 541, 335–342.

    Google Scholar 

  30. Granzier, H. L., & Labeit, S. (2004). The giant protein titin: A major player in myocardial mechanics, signaling, and disease. Circulation Research, 94, 284–295.

    Google Scholar 

  31. Gregorio, C. C., Granzier, H., Sorimachi, H., & Labeit, S. (1999). Muscle assembly: A titanic achievement? Current Opinion in Cell Biology, 11, 18–25.

    Google Scholar 

  32. Grutzner, A., Garcia-Manyes, S., Kotter, S., Badilla, C. L., Fernandez, J. M., & Linke, W. A. (2009). Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophysical Journal, 97, 825–834.

    ADS  Google Scholar 

  33. Hajjar, R. J., & Gwathmey, J. K. (1992). Cross-bridge dynamics in human ventricular myocardium. Regulation of contractility in the failing heart. Circulation, 86, 1819–1826.

    Google Scholar 

  34. Harding, S. E., Jones, S. M., Vescovo, G., Del Monte, F., & Poole-Wilson, P. A. (1992). Reduced contractile responses to forskolin and a cyclic AMP analogue in myocytes from failing human ventricle. European Journal of Pharmacology, 223, 39–48.

    Google Scholar 

  35. Harris, D. E., Work, S. S., Wright, R. K., Alpert, N. R., & Warshaw, D. M. (1994). Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro. Journal of Muscle Research and Cell Motility, 15, 11–19.

    Google Scholar 

  36. Harris, S. P., Lyons, R. G., & Bezold, K. L. (2011). In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circulation Research, 108, 751–764.

    Google Scholar 

  37. Head, J. G., Ritchie, M. D., & Geeves, M. A. (1995). Characterization of the equilibrium between blocked and closed states of muscle thin filaments. European Journal of Biochemistry, 227, 694–699.

    Google Scholar 

  38. Hernandez, O. M., Jones, M., Guzman, G., & Szczesna-Cordary, D. (2007). Myosin essential light chain in health and disease. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1643–H1654.

    Google Scholar 

  39. Herron, T. J., Korte, F. S., & McDonald, K. S. (2001). Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. American Journal of Physiology. Heart and Circulatory Physiology, 281, H1217–H1222.

    Google Scholar 

  40. Herron, T. J., & McDonald, K. S. (2002). Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circulation Research, 90, 1150–1152.

    Google Scholar 

  41. Heusch, P., Canton, M., Aker, S., van de Sand, A., Konietzka, I., Rassaf, T., et al. (2010). The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. British Journal of Pharmacology, 160, 1408–1416.

    Google Scholar 

  42. Hill, M. F., & Singal, P. K. (1996). Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. The American Journal of Pathology, 148, 291–300.

    Google Scholar 

  43. Hofmann, P. A., Hartzell, H. C., & Moss, R. L. (1991). Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. The Journal of General Physiology, 97, 1141–1163.

    Google Scholar 

  44. Huxley, H. E. (1990). Sliding filaments and molecular motile systems. Journal of Biological Chemistry, 265, 8347–8350.

    Google Scholar 

  45. Jacques, A. M., Copeland, O., Messer, A. E., Gallon, C. E., King, K., McKenna, W. J., et al. (2008). Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. Journal of Molecular and Cellular Cardiology, 45, 209–216.

    Google Scholar 

  46. Katz, A. M. (2011). Physiology of the heart. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins Health. p. xv, 576p.

    Google Scholar 

  47. Knoll, R. (2012). Myosin binding protein C: Implications for signal-transduction. Journal of Muscle Research and Cell Motility, 33, 31–42.

    Google Scholar 

  48. Kooij, V., Boontje, N., Zaremba, R., Jaquet, K., dos Remedios, C., Stienen, G. J., et al. (2010). Protein kinase C alpha and epsilon phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium. Basic Research in Cardiology, 105, 289–300.

    Google Scholar 

  49. Korte, F. S., Herron, T. J., Rovetto, M. J., & McDonald, K. S. (2005). Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts. American Journal of Physiology. Heart and Circulatory Physiology, 289, H801–H812.

    Google Scholar 

  50. Korte, F. S., McDonald, K. S., Harris, S. P., & Moss, R. L. (2003). Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circulation Research, 93, 752–758.

    Google Scholar 

  51. Kruger, M., Kotter, S., Grutzner, A., Lang, P., Andresen, C., Redfield, M. M., et al. (2009). Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circulation Research, 104, 87–94.

    Google Scholar 

  52. Lehman, W., Rosol, M., Tobacman, L. S., & Craig, R. (2001). Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. Journal of Molecular Biology, 307, 739–744.

    Google Scholar 

  53. Levine, R. J., Kensler, R. W., Yang, Z., Stull, J. T., & Sweeney, H. L. (1996). Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophysical Journal, 71, 898–907.

    ADS  Google Scholar 

  54. Li, Y., Wu, G., Tang, Q., Huang, C., Jiang, H., Shi, L., et al. (2011). Slow cardiac myosin regulatory light chain 2 (MYL2) was down-expressed in chronic heart failure patients. Clinical Cardiology, 34, 30–34.

    Google Scholar 

  55. Litten, R. Z., III, Martin, B. J., Low, R. B., & Alpert, N. R. (1982). Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circulation Research, 50, 856–864.

    Google Scholar 

  56. Manning, E. P., Tardiff, J. C., & Schwartz, S. D. (2011). A model of calcium activation of the cardiac thin filament. Biochemistry, 50, 7405–7413.

    Google Scholar 

  57. Margossian, S. S., White, H. D., Caulfield, J. B., Norton, P., Taylor, S., & Slayter, H. S. (1992). Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Identification of a causal agent for impaired myocardial function. Circulation, 85, 1720–1733.

    Google Scholar 

  58. Martin, A. F., Ball, K., Gao, L. Z., Kumar, P., & Solaro, R. J. (1991). Identification and functional significance of troponin I isoforms in neonatal rat heart myofibrils. Circulation Research, 69, 1244–1252.

    Google Scholar 

  59. Martos, R., Baugh, J., Ledwidge, M., O’Loughlin, C., Conlon, C., Patle, A., et al. (2007). Diastolic heart failure: Evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation, 115, 888–895.

    Google Scholar 

  60. Maughan, D. W. (2005). Kinetics and energetics of the crossbridge cycle. Heart Failure Reviews, 10, 175–185.

    Google Scholar 

  61. Maytum, R., Lehrer, S. S., & Geeves, M. A. (1999). Cooperativity and switching within the three-state model of muscle regulation. Biochemistry, 38, 1102–1110.

    Google Scholar 

  62. McClellan, G., Kulikovskaya, I., Flavigny, J., Carrier, L., & Winegrad, S. (2004). Effect of cardiac myosin-binding protein C on stability of the thick filament. Journal of Molecular and Cellular Cardiology, 37, 823–835.

    Google Scholar 

  63. McClellan, G., Weisberg, A., & Winegrad, S. (1994). cAMP can raise or lower cardiac actomyosin ATPase activity depending on alpha-adrenergic activity. American Journal of Physiology, 267, H431–H442.

    Google Scholar 

  64. McDonough, J. L., Arrell, D. K., & Van Eyk, J. E. (1999). Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circulation Research, 84, 9–20.

    Google Scholar 

  65. McKillop, D. F., & Geeves, M. A. (1991). Regulation of the acto.myosin subfragment 1 interaction by troponin/tropomyosin. Evidence for control of a specific isomerization between two acto.myosin subfragment 1 states. Biochemical Journal, 279(Pt 3), 711–718.

    Google Scholar 

  66. McKillop, D. F., & Geeves, M. A. (1993). Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophysical Journal, 65, 693–701.

    ADS  Google Scholar 

  67. McNally, E. M., Kraft, R., Bravo-Zehnder, M., Taylor, D. A., & Leinwand, L. A. (1989). Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. Journal of Molecular Biology, 210, 665–671.

    Google Scholar 

  68. Mercadier, J. J., Bouveret, P., Gorza, L., Schiaffino, S., Clark, W. A., Zak, R., et al. (1983). Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circulation Research, 53, 52–62.

    Google Scholar 

  69. Mesnard-Rouiller, L., Mercadier, J. J., Butler-Browne, G., Heimburger, M., Logeart, D., Allen, P. D., et al. (1997). Troponin T mRNA and protein isoforms in the human left ventricle: Pattern of expression in failing and control hearts. Journal of Molecular and Cellular Cardiology, 29, 3043–3055.

    Google Scholar 

  70. Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–390.

    Google Scholar 

  71. Morano, I. (1992). Effects of different expression and posttranslational modifications of myosin light chains on contractility of skinned human cardiac fibers. Basic Research in Cardiology, 87(Suppl. 1), 129–141.

    Google Scholar 

  72. Morano, I. (1999). Tuning the human heart molecular motors by myosin light chains. Journal of Molecular Medicine, 77, 544–555.

    Google Scholar 

  73. Morano, I., & Haase, H. (1997). Different actin affinities of human cardiac essential myosin light chain isoforms. FEBS Letters, 408, 71–74.

    Google Scholar 

  74. Morano, I., Hadicke, K., Grom, S., Koch, A., Schwinger, R. H., Bohm, M., et al. (1994). Titin, myosin light chains and C-protein in the developing and failing human heart. Journal of Molecular and Cellular Cardiology, 26, 361–368.

    Google Scholar 

  75. Morano, I., Hadicke, K., Haase, H., Bohm, M., Erdmann, E., & Schaub, M. C. (1997). Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. Journal of Molecular and Cellular Cardiology, 29, 1177–1187.

    Google Scholar 

  76. Morano, M., Zacharzowski, U., Maier, M., Lange, P. E., Alexi-Meskishvili, V., Haase, H., et al. (1996). Regulation of human heart contractility by essential myosin light chain isoforms. The Journal of Clinical Investigation, 98, 467–473.

    Google Scholar 

  77. Neumann, J., Eschenhagen, T., Jones, L. R., Linck, B., Schmitz, W., Scholz, H., et al. (1997). Increased expression of cardiac phosphatases in patients with end-stage heart failure. Journal of Molecular and Cellular Cardiology, 29, 265–272.

    Google Scholar 

  78. Noguchi, T., Hunlich, M., Camp, P. C., Begin, K. J., El-Zaru, M., Patten, R., et al. (2004). Thin-filament-based modulation of contractile performance in human heart failure. Circulation, 110, 982–987.

    Google Scholar 

  79. Noland, T. A., Jr., & Kuo, J. F. (1992). Protein kinase C phosphorylation of cardiac troponin T decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochemical Journal, 288(Pt 1), 123–129.

    Google Scholar 

  80. Noland, T. A., Jr., Raynor, R. L., Jideama, N. M., Guo, X., Kazanietz, M. G., Blumberg, P. M., et al. (1996). Differential regulation of cardiac actomyosin S-1 MgATPase by protein kinase C isozyme-specific phosphorylation of specific sites in cardiac troponin I and its phosphorylation site mutants. Biochemistry, 35, 14923–14931.

    Google Scholar 

  81. Palmiter, K. A., Tyska, M. J., Dupuis, D. E., Alpert, N. R., & Warshaw, D. M. (1999). Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. The Journal of Physiology, 519(Pt 3), 669–678.

    Google Scholar 

  82. Pan, B. S., & Solaro, R. J. (1987). Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. Journal of Biological Chemistry, 262, 7839–7849.

    Google Scholar 

  83. Passarelli, C., Petrini, S., Pastore, A., Bonetto, V., Sale, P., Gaeta, L. M., et al. (2008). Myosin as a potential redox-sensor: An in vitro study. Journal of Muscle Research and Cell Motility, 29, 119–126.

    Google Scholar 

  84. Pawloski-Dahm, C. M., Song, G., Kirkpatrick, D. L., Palermo, J., Gulick, J., Dorn, G. W., II, et al. (1998). Effects of total replacement of atrial myosin light chain-2 with the ventricular isoform in atrial myocytes of transgenic mice. Circulation, 97, 1508–1513.

    Google Scholar 

  85. Potter, J. D., Sheng, Z., Pan, B. S., & Zhao, J. (1995). A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. Journal of Biological Chemistry, 270, 2557–2562.

    Google Scholar 

  86. Purcell, I. F., Bing, W., & Marston, S. B. (1999). Functional analysis of human cardiac troponin by the in vitro motility assay: Comparison of adult, foetal and failing hearts. Cardiovascular Research, 43, 884–891.

    Google Scholar 

  87. Rajan, S., Jagatheesan, G., Karam, C. N., Alves, M. L., Bodi, I., Schwartz, A., et al. (2010). Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform. Circulation, 121, 410–418.

    Google Scholar 

  88. Randhawa, A. K., & Singal, P. K. (1992). Pressure overload-induced cardiac hypertrophy with and without dilation. Journal of the American College of Cardiology, 20, 1569–1575.

    Google Scholar 

  89. Rao, V. S., La Bonte, L. R., Xu, Y., Yang, Z., French, B. A., & Guilford, W. H. (2007). Alterations to myofibrillar protein function in nonischemic regions of the heart early after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 293, H654–H659.

    Google Scholar 

  90. Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., et al. (1993). Three-dimensional structure of myosin subfragment-1: A molecular motor. Science, 261, 50–58.

    ADS  Google Scholar 

  91. Reiser, P. J., Portman, M. A., Ning, X. H., & Schomisch Moravec, C. (2001). Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. American Journal of Physiology. Heart and Circulatory Physiology, 280, H1814–H1820.

    Google Scholar 

  92. Revera, M., Van der Merwe, L., Heradien, M., Goosen, A., Corfield, V. A., Brink, P. A., et al. (2007). Long-term follow-up of R403WMYH7 and R92WTNNT2 HCM families: Mutations determine left ventricular dimensions but not wall thickness during disease progression. Cardiovascular Journal of Africa, 18, 146–153.

    Google Scholar 

  93. Rundell, V. L., Manaves, V., Martin, A. F., & de Tombe, P. P. (2005). Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics. American Journal of Physiology. Heart and Circulatory Physiology, 288, H896–H903.

    Google Scholar 

  94. Sadayappan, S., Osinska, H., Klevitsky, R., Lorenz, J. N., Sargent, M., Molkentin, J. D., et al. (2006). Cardiac myosin binding protein C phosphorylation is cardioprotective. Proceedings of the National Academy of Sciences of the United States of America, 103, 16918–16923.

    ADS  Google Scholar 

  95. Sanbe, A., Fewell, J. G., Gulick, J., Osinska, H., Lorenz, J., Hall, D. G., et al. (1999). Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. Journal of Biological Chemistry, 274, 21085–21094.

    Google Scholar 

  96. Schiaffino, S., Gorza, L., Saggin, L., Valfre, C., & Sartore, S. (1984). Myosin changes in hypertrophied human atrial and ventricular myocardium. A correlated immunofluorescence and quantitative immunochemical study on serial cryosections. European Heart Journal, 5(Suppl. F), 95–102.

    Google Scholar 

  97. Schwartz, K., Carrier, L., Lompre, A. M., Mercadier, J. J., & Boheler, K. R. (1992). Contractile proteins and sarcoplasmic reticulum calcium-ATPase gene expression in the hypertrophied and failing heart. Basic Research in Cardiology, 87(Suppl. 1), 285–290.

    Google Scholar 

  98. Scruggs, S. B., Hinken, A. C., Thawornkaiwong, A., Robbins, J., Walker, L. A., de Tombe, P. P., et al. (2009). Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. Journal of Biological Chemistry, 284, 5097–5106.

    Google Scholar 

  99. Scruggs, S. B., Reisdorph, R., Armstrong, M. L., Warren, C. M., Reisdorph, N., Solaro, R. J., et al. (2010). A novel, in-solution separation of endogenous cardiac sarcomeric proteins and identification of distinct charged variants of regulatory light chain. Molecular & Cellular Proteomics, 9, 1804–1818.

    Google Scholar 

  100. Simpson, P. C. (1999). Beta-protein kinase C and hypertrophic signaling in human heart failure. Circulation, 99, 334–337.

    Google Scholar 

  101. Sobotka, P. A., Brottman, M. D., Weitz, Z., Birnbaum, A. J., Skosey, J. L., & Zarling, E. J. (1993). Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radical Biology & Medicine, 14, 643–647.

    Google Scholar 

  102. Solaro, R. J., & Rarick, H. M. (1998). Troponin and tropomyosin: Proteins that switch on and tune in the activity of cardiac myofilaments. Circulation Research, 83, 471–480.

    Google Scholar 

  103. Stelzer, J. E., Dunning, S. B., & Moss, R. L. (2006). Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circulation Research, 98, 1212–1218.

    Google Scholar 

  104. Stelzer, J. E., Fitzsimons, D. P., & Moss, R. L. (2006). Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Biophysical Journal, 90, 4119–4127.

    ADS  Google Scholar 

  105. Sugiura, S., Kobayakawa, N., Fujita, H., Yamashita, H., Momomura, S., Chaen, S., et al. (1998). Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: Molecular basis for cardiac adaptation. Circulation Research, 82, 1029–1034.

    Google Scholar 

  106. Sugiura, S., & Yamashita, H. (1998). Functional characterization of cardiac myosin isoforms. The Japanese Journal of Physiology, 48, 173–179.

    Google Scholar 

  107. Sumandea, M. P., Pyle, W. G., Kobayashi, T., de Tombe, P. P., & Solaro, R. J. (2003). Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. Journal of Biological Chemistry, 278, 35135–35144.

    Google Scholar 

  108. Suurmeijer, A. J., Clement, S., Francesconi, A., Bocchi, L., Angelini, A., Van Veldhuisen, D. J., et al. (2003). Alpha-actin isoform distribution in normal and failing human heart: A morphological, morphometric, and biochemical study. The Journal of Pathology, 199, 387–397.

    Google Scholar 

  109. Tardiff, J. C. (2005). Sarcomeric proteins and familial hypertrophic cardiomyopathy: Linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Failure Reviews, 10, 237–248.

    Google Scholar 

  110. Tardiff, J. C. (2011). Thin filament mutations: Developing an integrative approach to a complex disorder. Circulation Research, 108, 765–782.

    Google Scholar 

  111. Tobacman, L. S., Nihli, M., Butters, C., Heller, M., Hatch, V., Craig, R., et al. (2002). The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. Journal of Biological Chemistry, 277, 27636–27642.

    Google Scholar 

  112. Tyska, M. J., & Warshaw, D. M. (2002). The myosin power stroke. Cell Motility and the Cytoskeleton, 51, 1–15.

    Google Scholar 

  113. van der Velden, J., Klein, L. J., van der Bijl, M., Huybregts, M. A., Stooker, W., Witkop, J., et al. (1999). Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart. Cardiovascular Research, 42, 706–719.

    Google Scholar 

  114. van der Velden, J., Papp, Z., Boontje, N. M., Zaremba, R., de Jong, J. W., Janssen, P. M., et al. (2003). The effect of myosin light chain 2 dephosphorylation on Ca2+-sensitivity of force is enhanced in failing human hearts. Cardiovascular Research, 57, 505–514.

    Google Scholar 

  115. van der Velden, J., Papp, Z., Zaremba, R., Boontje, N. M., de Jong, J. W., Owen, V. J., et al. (2003). Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovascular Research, 57, 37–47.

    Google Scholar 

  116. van Heerebeek, L., Hamdani, N., Handoko, M. L., Falcao-Pires, I., Musters, R. J., Kupreishvili, K., et al. (2008). Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation, 117, 43–51.

    Google Scholar 

  117. Vandekerckhove, J., Bugaisky, G., & Buckingham, M. (1986). Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. Journal of Biological Chemistry, 261, 1838–1843.

    Google Scholar 

  118. Vandekerckhove, J., & Weber, K. (1979). The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation, 14, 123–133.

    Google Scholar 

  119. Weisberg, A., & Winegrad, S. (1996). Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proceedings of the National Academy of Sciences of the United States of America, 93, 8999–9003.

    ADS  Google Scholar 

  120. Weith, A., Sadayappan, S., Gulick, J., Previs, M. J., Vanburen, P., Robbins, J., et al. (2012). Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain. Journal of Molecular and Cellular Cardiology, 52, 219–227.

    Google Scholar 

  121. Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., & Mentzer, R. M. (1996). Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: Role of altered beta-adrenergically mediated protein phosphorylation. The Journal of Clinical Investigation, 98, 167–176.

    Google Scholar 

  122. Xiao, L., Zhao, Q., Du, Y., Yuan, C., Solaro, R. J., & Buttrick, P. M. (2007). PKCepsilon increases phosphorylation of the cardiac myosin binding protein C at serine 302 both in vitro and in vivo. Biochemistry, 46, 7054–7061.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata M. Wolska Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simon, J.N., Tardiff, J.C., Wolska, B.M. (2013). Sarcomeres and the Biophysics of Heart Failure. In: Solaro, R., Tardiff, J. (eds) Biophysics of the Failing Heart. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7678-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7678-8_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7677-1

  • Online ISBN: 978-1-4614-7678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics