Skip to main content

Unraveling the Local Influence of Tumor-Surrounding Adipose Tissue on Tumor Progression: Cellular and Molecular Actors Involved

  • Chapter
  • First Online:
Adipose Tissue and Cancer

Abstract

Cells that compose the tumor stroma are associated, if not obligate, partners in tumor progression. Among the different cell types frequently found at close proximity of evolving tumors, little attention has been given to cells that compose the adipose tissue (AT) although a growing interest can be noted in recent years. AT is mainly composed of mature adipocytes that are able to secrete a large panel of bioactive molecules (adipokines) and adipose progenitors. Emerging studies clearly indicate that a bidirectional crosstalk is established between all cellular components of AT and cancer cells and that the tumor-surrounding AT contributes to inflammation, extracellular matrix remodeling as well as energy supply within the tumors. In this chapter, we present evidences showing how AT locally affects tumor progression in given types of tumors and how these results might be attractive to explain the link between obesity and the poor prognosis of some cancers. This will be preceded by the overall description of AT composition and function with special emphasis on the specificity of adipose depots, key aspects that need to be taken in account when paracrine effects of AT on tumor progression is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49.

    PubMed  CAS  Google Scholar 

  2. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9(8):628–38.

    PubMed  CAS  Google Scholar 

  3. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    PubMed  CAS  Google Scholar 

  4. Mantovani A et al. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol. 2011;41(9):2522–5.

    PubMed  CAS  Google Scholar 

  5. Bjorndal B et al. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650.

    PubMed  Google Scholar 

  6. Ouchi N et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    PubMed  CAS  Google Scholar 

  7. Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol. 2012;302(2):C327–59.

    PubMed  CAS  Google Scholar 

  8. Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37(3):753–68. x–xi.

    PubMed  CAS  Google Scholar 

  9. Walter M et al. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene. 2009;28(30):2745–55.

    PubMed  CAS  Google Scholar 

  10. Dirat B et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.

    PubMed  CAS  Google Scholar 

  11. Iyengar P et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 2005;115(5):1163–76.

    PubMed  CAS  Google Scholar 

  12. Andarawewa KL et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 2005;65(23):10862–71.

    PubMed  CAS  Google Scholar 

  13. Nieman KM et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.

    PubMed  CAS  Google Scholar 

  14. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    PubMed  CAS  Google Scholar 

  15. Gir P et al. Human adipose stem cells: current clinical applications. Plast Reconstr Surg. 2012;129(6):1277–90.

    PubMed  CAS  Google Scholar 

  16. Zhang Y, Bellows CF, Kolonin MG. Adipose tissue-derived progenitor cells and cancer. World J Stem Cells. 2010;2(5):103–13.

    PubMed  Google Scholar 

  17. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52.

    PubMed  CAS  Google Scholar 

  18. Kozak LP, Koza RA, Anunciado-Koza R. Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obes (Lond). 2010;34 Suppl 1:S23–7.

    Google Scholar 

  19. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.

    PubMed  CAS  Google Scholar 

  20. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    PubMed  CAS  Google Scholar 

  21. Zierath JR et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia. 1998;41(11):1343–54.

    PubMed  CAS  Google Scholar 

  22. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48(5):275–97.

    PubMed  CAS  Google Scholar 

  23. Zhang Y et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    PubMed  CAS  Google Scholar 

  24. Van Harmelen V et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998;47(6):913–7.

    PubMed  Google Scholar 

  25. Kadowaki T et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92.

    PubMed  CAS  Google Scholar 

  26. Drolet R et al. Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women. Obesity (Silver Spring). 2009;17(3):424–30.

    CAS  Google Scholar 

  27. Fontana L et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–3.

    PubMed  CAS  Google Scholar 

  28. Fain JN et al. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–82.

    PubMed  CAS  Google Scholar 

  29. Ledoux S et al. Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes. 2008;57(12):3247–57.

    PubMed  CAS  Google Scholar 

  30. Lafontan M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol. 2005;45:119–46.

    PubMed  CAS  Google Scholar 

  31. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34(6):949–59.

    CAS  Google Scholar 

  32. Smith SR et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50(4):425–35.

    PubMed  CAS  Google Scholar 

  33. Sbarbati A et al. Subcutaneous adipose tissue classification. Eur J Histochem. 2010;54(4):e48.

    PubMed  CAS  Google Scholar 

  34. Krings A et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.

    PubMed  CAS  Google Scholar 

  35. Lecka-Czernik B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone. 2012;50(2):534–9.

    PubMed  CAS  Google Scholar 

  36. Naveiras O et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    PubMed  CAS  Google Scholar 

  37. Rajsheker S et al. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6.

    PubMed  CAS  Google Scholar 

  38. Pond CM. Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):17–30.

    PubMed  CAS  Google Scholar 

  39. Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia. 2010;15(3):279–90.

    PubMed  Google Scholar 

  40. Wang YY et al. Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett. 2012;324(2):142–51.

    PubMed  CAS  Google Scholar 

  41. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6(1):1–11.

    PubMed  CAS  Google Scholar 

  42. Elliott BE et al. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer. 1992;51(3):416–24.

    PubMed  CAS  Google Scholar 

  43. Manabe Y et al. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol. 2003;201(2):221–8.

    PubMed  Google Scholar 

  44. Dirat B et al. Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr Dev. 2010;19:45–52.

    PubMed  Google Scholar 

  45. Bochet L et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 2011;411(1):102–6.

    PubMed  CAS  Google Scholar 

  46. Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550–70.

    PubMed  CAS  Google Scholar 

  47. Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem. 2008;389(8):1037–41.

    PubMed  CAS  Google Scholar 

  48. Iyengar P et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 2003;22(41):6408–23.

    PubMed  CAS  Google Scholar 

  49. Khan T et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.

    PubMed  CAS  Google Scholar 

  50. Motrescu ER et al. Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene. 2008;27(49):6347–55.

    PubMed  CAS  Google Scholar 

  51. Finley DS et al. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol. 2009;182(4):1621–7.

    PubMed  CAS  Google Scholar 

  52. Divoux A, Clement K. Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes Rev. 2011;12(5):e494–503.

    PubMed  CAS  Google Scholar 

  53. Subbaramaiah K et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46.

    CAS  Google Scholar 

  54. Morris PG et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila). 2011;4(7):1021–9.

    CAS  Google Scholar 

  55. Dunlap SM et al. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev Res (Phila). 2012;5(7):930–42.

    CAS  Google Scholar 

  56. Dogan S et al. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-alpha mice. Breast Cancer Res. 2007;9(6):R91.

    PubMed  Google Scholar 

  57. Zhang Y et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 2009;69(12):5259–66.

    PubMed  CAS  Google Scholar 

  58. Kidd S et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 2012;7(2):e30563.

    PubMed  CAS  Google Scholar 

  59. Chandler EM et al. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc Natl Acad Sci USA. 2012;109(25):9786–91.

    PubMed  CAS  Google Scholar 

  60. Devarajan E et al. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer. 2012;131(5):1023–31.

    PubMed  CAS  Google Scholar 

  61. Zhao M et al. Multipotent adipose stromal cells and breast cancer development: think globally, act locally. Mol Carcinog. 2010;49(11):923–7.

    PubMed  CAS  Google Scholar 

  62. Petit JY et al. Locoregional recurrence risk after lipofilling in breast cancer patients. Ann Oncol. 2012;23(3):582–8.

    PubMed  CAS  Google Scholar 

  63. Bertolini F et al. Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim Biophys Acta. 2012;1826(1):209–14.

    PubMed  CAS  Google Scholar 

  64. Donnenberg VS et al. Regenerative therapy after cancer: what are the risks? Tissue Eng Part B Rev. 2010;16(6):567–75.

    PubMed  Google Scholar 

  65. Martin-Padura I et al. The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res. 2012;72(1):325–34.

    PubMed  CAS  Google Scholar 

  66. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351(24):2519–29.

    PubMed  CAS  Google Scholar 

  67. Cai J et al. Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis. 2012;33(1):20–9.

    PubMed  CAS  Google Scholar 

  68. Sorensen EW et al. Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res. 2009;45(2–3):185–94.

    PubMed  CAS  Google Scholar 

  69. Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics. 2011;5(3):170–91.

    PubMed  CAS  Google Scholar 

  70. Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab. 2012;15(1):4–5.

    PubMed  CAS  Google Scholar 

  71. Gazi E et al. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J Lipid Res. 2007;48(8):1846–56.

    PubMed  CAS  Google Scholar 

  72. Cho JA et al. Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol. 2011;123(2):379–86.

    PubMed  CAS  Google Scholar 

  73. Jeon ES et al. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells. 2008;26(3):789–97.

    PubMed  CAS  Google Scholar 

  74. Valet P et al. Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J Clin Invest. 1998;101(7):1431–8.

    PubMed  CAS  Google Scholar 

  75. Jeon ES et al. Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 alpha from human mesenchymal stem cells. Exp Mol Med. 2010;42(4):280–93.

    PubMed  CAS  Google Scholar 

  76. Protani MM, Nagle CM, Webb PM. Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2012;5(7):901–10.

    Google Scholar 

  77. Schmandt RE et al. Understanding obesity and endometrial cancer risk: opportunities for prevention. Am J Obstet Gynecol. 2011;205(6):518–25.

    PubMed  Google Scholar 

  78. Klopp AH et al. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res. 2012;18(3):771–82.

    PubMed  CAS  Google Scholar 

  79. Swindle P et al. Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol. 2005;174(3):903–7.

    PubMed  Google Scholar 

  80. Magi-Galluzzi C et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol. 2011;24(1):26–38.

    PubMed  Google Scholar 

  81. Azevedo A et al. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol. 2011;2(12):384–96.

    PubMed  Google Scholar 

  82. Ribeiro RJ et al. Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem. 2012;29(1–2):233–40.

    PubMed  CAS  Google Scholar 

  83. Ribeiro R et al. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res. 2012;31(1):32.

    PubMed  CAS  Google Scholar 

  84. Prantl L et al. Adipose tissue-derived stem cells promote prostate tumor growth. Prostate. 2010;70(15):1709–15.

    PubMed  CAS  Google Scholar 

  85. Neugut AI, Chen AC, Petrylak DP. The “skinny” on obesity and prostate cancer prognosis. J Clin Oncol. 2004;22(3):395–8.

    PubMed  Google Scholar 

  86. van Roermund JG et al. Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int. 2011;107(11):1775–9.

    PubMed  Google Scholar 

  87. McGuire BB, Fitzpatrick JM. BMI and the risk of renal cell carcinoma. Curr Opin Urol. 2011;21(5):356–61.

    PubMed  Google Scholar 

  88. Stewart SB, Freedland SJ. Influence of obesity on the incidence and treatment of genitourinary malignancies. Urol Oncol. 2011;29(5):476–86.

    PubMed  Google Scholar 

  89. Doyle SL et al. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71(1):181–9.

    PubMed  CAS  Google Scholar 

  90. Notarnicola M et al. Low levels of lipogenic enzymes in peritumoral adipose tissue of colorectal cancer patients. Lipids. 2012;47(1):59–63.

    PubMed  CAS  Google Scholar 

  91. Amemori S et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G923–9.

    PubMed  CAS  Google Scholar 

  92. Hoda MR et al. Leptin acts as a mitogenic and antiapoptotic factor for colonic cancer cells. Br J Surg. 2007;94(3):346–54.

    PubMed  CAS  Google Scholar 

  93. Jaffe T, Schwartz B. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int J Cancer. 2008;123(11):2543–56.

    PubMed  CAS  Google Scholar 

  94. Ratke J et al. Leptin stimulates the migration of colon carcinoma cells by multiple signaling pathways. Endocr Relat Cancer. 2010;17(1):179–89.

    PubMed  CAS  Google Scholar 

  95. Bartucci M et al. Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-fluorouracil in colorectal tumor stem cells. Endocr Relat Cancer. 2010;17(3):823–33.

    PubMed  CAS  Google Scholar 

  96. Larsson SC, Wolk A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr. 2007;86(3):556–65.

    PubMed  CAS  Google Scholar 

  97. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2533–47.

    PubMed  Google Scholar 

  98. Renehan AG et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    PubMed  Google Scholar 

  99. Sung MK et al. Obesity-induced metabolic stresses in breast and colon cancer. Ann N Y Acad Sci. 2011;1229:61–8.

    PubMed  CAS  Google Scholar 

  100. Park SY et al. Effects of diet-induced obesity on colitis-associated colon tumor formation in A/J mice. Int J Obes (Lond). 2012;36(2):273–80.

    CAS  Google Scholar 

  101. Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist. 2010;15(6):556–65.

    PubMed  Google Scholar 

  102. Lysaght J et al. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 2011;312(1):62–72.

    PubMed  CAS  Google Scholar 

  103. Nomoto-Kojima N et al. Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell Tissue Res. 2011;344(2):287–98.

    PubMed  CAS  Google Scholar 

  104. Muller A et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    PubMed  CAS  Google Scholar 

  105. Zhao BC et al. Adipose-derived stem cells promote gastric cancer cell growth, migration and invasion through SDF-1/CXCR4 axis. Hepatogastroenterology. 2010;57(104):1382–9.

    PubMed  CAS  Google Scholar 

  106. Calle EE et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    PubMed  Google Scholar 

  107. Jamieson NB et al. Peripancreatic fat invasion is an independent predictor of poor outcome following pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. J Gastrointest Surg. 2011;15(3):512–24.

    PubMed  Google Scholar 

  108. Balentine CJ et al. Intra-abdominal fat predicts survival in pancreatic cancer. J Gastrointest Surg. 2010;14(11):1832–7.

    PubMed  Google Scholar 

  109. Mathur A et al. Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. J Am Coll Surg. 2009;208(5):989–94. discussion 994–6.

    PubMed  Google Scholar 

  110. Grippo PJ et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut. 2012;61(10):1454–64.

    PubMed  CAS  Google Scholar 

  111. White PB et al. Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg. 2010;14(12):1888–93. discussion 1893–4.

    PubMed  Google Scholar 

  112. Zyromski NJ et al. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery. 2009;146(2):258–63.

    PubMed  Google Scholar 

  113. Cousin B et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One. 2009;4(7):e6278.

    PubMed  Google Scholar 

  114. Bandarchi B et al. From melanocyte to metastatic malignant melanoma. Dermatol Res Pract. 2010;2010:583748.

    PubMed  Google Scholar 

  115. Forsea AM et al. Melanoma incidence and mortality in Europe: new estimates, persistent disparities. Br J Dermatol. 2012;167(5):1124–30.

    PubMed  CAS  Google Scholar 

  116. Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr Oncol Rep. 2008;10(5):439–46.

    PubMed  CAS  Google Scholar 

  117. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–7.

    PubMed  CAS  Google Scholar 

  118. Smolle J et al. Pathology of tumor-stroma interaction in melanoma metastatic to the skin. Hum Pathol. 1995;26(8):856–61.

    PubMed  CAS  Google Scholar 

  119. Wagner M et al. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis. 2012;15(3):481–95.

    PubMed  CAS  Google Scholar 

  120. Hollander DM et al. Demonstration of lipolytic activity from cultured human melanoma cells. J Surg Res. 1986;40(5):445–9.

    PubMed  CAS  Google Scholar 

  121. Kushiro K, Nunez NP. Ob/ob serum promotes a mesenchymal cell phenotype in B16BL6 melanoma cells. Clin Exp Metastasis. 2011;28(8):877–86.

    PubMed  CAS  Google Scholar 

  122. Dennis LK et al. Cutaneous melanoma and obesity in the Agricultural Health Study. Ann Epidemiol. 2008;18(3):214–21.

    PubMed  Google Scholar 

  123. Sharma SD, Katiyar SK. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin. Toxicol Appl Pharmacol. 2010;244(3):328–35.

    PubMed  CAS  Google Scholar 

  124. Brandon EL et al. Obesity promotes melanoma tumor growth: role of leptin. Cancer Biol Ther. 2009;8(19):1871–9.

    PubMed  CAS  Google Scholar 

  125. Pandey V et al. Diet-induced obesity increases melanoma progression: involvement of Cav-1 and FASN. Int J Cancer. 2012;130(3):497–508.

    PubMed  CAS  Google Scholar 

  126. Mori A et al. Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer. 2006;119(12):2760–7.

    PubMed  CAS  Google Scholar 

  127. Askmyr M, Quach J, Purton LE. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone. 2011;48(1):115–20.

    PubMed  Google Scholar 

  128. Hino M et al. Leptin receptor and leukemia. Leuk Lymphoma. 2000;36(5–6):457–61.

    PubMed  CAS  Google Scholar 

  129. Laharrague P et al. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 1998;12(9):747–52.

    PubMed  CAS  Google Scholar 

  130. Behan JW et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 2009;69(19):7867–74.

    PubMed  CAS  Google Scholar 

  131. Gelelete CB et al. Overweight as a prognostic factor in children with acute lymphoblastic leukemia. Obesity (Silver Spring). 2011;19(9):1908–11.

    Google Scholar 

  132. Castillo JJ et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. Leuk Res. 2012;36(7):868–75.

    PubMed  Google Scholar 

  133. Medeiros BC et al. Impact of body-mass index in the outcome of adult patients with acute myeloid leukemia. Haematologica. 2012;97(9):1401–4.

    PubMed  Google Scholar 

  134. Caers J et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia. 2007;21(7):1580–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies performed in our laboratories were supported by the French National Cancer Institute (INCA PL 2006–035 and INCA PL 2010–214 to PV and CM), the “Ligue Régionale contre le Cancer” (Comité du Lot, de la Haute-Garonne et du Gers to CM), the Fondation de France (to PV and CM), the Association pour la Recherche sur les Tumeurs Prostatiques ARTP (to CM), and the University of Toulouse (AO CS 2009 to CM). We would like to thank Dr Max Lafontan for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muller, C., Nieto, L., Valet, P. (2013). Unraveling the Local Influence of Tumor-Surrounding Adipose Tissue on Tumor Progression: Cellular and Molecular Actors Involved. In: Kolonin, M. (eds) Adipose Tissue and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7660-3_7

Download citation

Publish with us

Policies and ethics