Skip to main content

Economic and Environmental Performance of the Firm: Synergy or Trade-Off? Insights from the EOQ Model

  • Chapter
  • First Online:

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 197))

Abstract

Over the last decades, corporations are increasingly expected to perform well on the triple bottom line: People, Planet and Profit. However, both in academia and in practice, there is no consensus on the feasibility of doing good and doing well simultaneously. The traditional view is that there is an unavoidable trade-off between the social and environmental performance of an organisation and its profitability. The other school of thought claimed that breaking the trade-off and creating a synergy, is not only desired but actually feasible. In this chapter, the validity of both views is tested by using a multi-objective approach to a variant of the well-known EOQ model. It is demonstrated that both views are not contradictory but valid under different conditions. As such this chapter helps to reach a better understanding of the factors that drive trade-offs and synergy behaviour of the triple bottom line measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benjaafar S, Li Y, Daskin M (2010) Carbon footprint and the management of supply chains: insights from simple models. Working paper, University of Minnesota. http://isye.umn.edu/faculty/pdf/beyada-10-02-10-final.pdf, accessed 19 January 2013

  • Bonney M, Jaber MY (2011) Environmentally responsible inventory models: Non-classical models for a non-classical era. International Journal Production Economics, 133(1): 43–53

    Google Scholar 

  • Boons F, Wagner M (2009) Assessing the relationship between economic and ecological performance: Distinguishing system levels and the role of innovation. Ecological Economics 68: 1908–1914

    Google Scholar 

  • Borgonovo E (2010) Sensitivity analysis with finite changes: An application to modified EOQ models, European Journal of Operational Research 200: 127–138

    Google Scholar 

  • Bouchery Y, Ghaffari A, Jemai Z, Dallery Y (2012) Including sustainability criteria into inventory models, European Journal of Operational Research 222: 229–240

    Google Scholar 

  • Brønn P, Vidaver-Cohen D (2009) Corporate motives for social initiative: legitimacy, sustainability, or the bottom line? Journal of Business Ethics 87: 91–109

    Google Scholar 

  • Butner K, Geuder D, Hittner J (2008) Mastering carbon Management: Balancing trade-offs to optimize supply chain efficiencies. IBM Institute for Business Value. http://www-935.ibm.com/services/uk/bcs/pdf/mastering_carbon_management.pdf, accessed 19 January 2013

  • Can Arslan M, Turkay M (2010) EOQ revisited with sustainability considerations. Working paper, Koç University, Istanbul, Turkey. http://home.ku.edu.tr/~mturkay/pub/EOQ_Sustainability.pdf, accessed 19 January 2013

  • Chen X, Benjaafar S, Elomri A, (2012) The carbon-constrained EOQ, Operations Research Letters, doi:10.1016/j.orl.2012.12.003

    Google Scholar 

  • Corbett CJ, Klassen RD (2006), Extending the horizons: Environmental excellence as key to improving operations. Manufacturing & Service Operations Management 8(1): 5–22

    Google Scholar 

  • Filbeck F, Gorman RF (2004) The relationship between the environmental and financial performance of public utilities. Environmental and Resource Economics 29: 137–157

    Google Scholar 

  • Franck A (2008) Sustainable Supply Chain Management: A tool for reinforcing shareholder value. Accenture Supply Chain Management Viewpoint. http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-Sustainable-Supply-Chain-Management.pdf, accessed 19 January 2013

  • Griffin JJ, Mahon JF (1997) The corporate social performance and corporate financial performance debate: Twenty-five years of incomparable research. Business and Society 36(1): 5–31

    Google Scholar 

  • Gupta MC (1995) Environmental management and its impact on the operations function. International Journal of Operations & Production Management 15(8): 34–51

    Google Scholar 

  • Hua G, Cheng TCE, Wang S (2011) Managing carbon footprints in inventory management, International Journal Production Economics 132: 178–185

    Google Scholar 

  • Hsu T (2011) Wal-Mart’s motive is no secret: going green saves it money. Los Angeles Times. June 4. http://articles.latimes.com/2011/jun/04/business/la-fi-walmart-green-20110604, accessed 19 January 2013

  • King A, Lenox M (2001) Does it really pay to be green? An empirical study of firm environmental and financial performance, The Journal of Industrial Ecology 5(1): 105–116

    Google Scholar 

  • Klassen R, McLaughlin C (1996) The impact of environmental management on firm performance, Management Science 42(8): 1199–1215

    Google Scholar 

  • Linton JD, Klassen R, Jayaraman V (2007) Sustainable supply chains: An introduction. Journal of Operations Management 26(6): 1075–1082

    Google Scholar 

  • Palme K, Wallace E, Portney P (1995) Tightening environmental standards: The benefit-cost or the no-cost paradigm. Journal of Economic Perspectives 9(4): 119–132

    Google Scholar 

  • Porter ME, Van der Linde C (1995), Green and competitive: Ending the stalemate. Harvard Business Review, Sept-Oct: 120–134

    Google Scholar 

  • Seuring S, Muller M (2008), From a Literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner production 16: 1699–1710

    Google Scholar 

  • Schaltegger S, Synnestvedt T (2002): The link between ‘green’ and economic success: environmental management as the crucial trigger between environmental and economic performance. Journal of Environmental Management 65: 339–346

    Google Scholar 

  • Walley N, Whitehead B (1994), It’s not easy being green. Harvard Business Review 72(3): 2–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. A. van der Veen .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix the formal proofs of the various observations will be given. To do so, the partial derivatives of \( {\text{TC}}\left( {Q_{\text{W}}^{*} } \right) \) and \( {\text{TE}}\left( {Q_{\text{W}}^{*} } \right) \) with respect to the parameter at hand will be determined. Note that when either both partial derivates are positive or both are negative, the two objectives are aligned and if both partial derivatives have opposite signs, the objectives are conflicting. Throughout this appendix, the assumptions \( \Updelta \ne 0 \), 0 < α < 1, and c e, γ H, γ O, E O, E H > 0 will be used.

Proof of Observation 1

Note that

$$ \frac{\partial }{\partial \alpha }{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{C_{\text{H}} }}{{B_{\text{H}} }} - \frac{{C_{\text{O}} }}{{B_{\text{O}} }}} \right)\left( {\frac{{\gamma_{\text{O}} \sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{\gamma_{\text{H}} \sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }}} \right). $$

It is easy to see that

$$ \left( {\frac{{C_{\text{H}} }}{{B_{\text{H}} }} - \frac{{C_{\text{O}} }}{{B_{\text{O}} }}} \right) > 0 \;{\text{iff}}\;\left( {1 - \alpha } \right)\Updelta < 0, $$

and

$$ \left( {\frac{{\gamma_{\text{O}} \sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{\gamma_{\text{H}} \sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }}} \right) > 0\;{\text{iff}}\;\Updelta > 0. \, $$

Similarly, note that

$$ \frac{\partial }{\partial \alpha }{\text{TE}}(Q_{\text{W}}^{*} ) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{E_{\text{H}} }}{{B_{\text{H}} }} - \frac{{E_{\text{O}} }}{{B_{\text{O}} }}} \right)\left( {\frac{{\gamma_{\text{O}} \sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{\gamma_{\text{H}} \sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }}} \right), $$

and

$$ \left( {\frac{{E_{\text{H}} }}{{B_{\text{H}} }} - \frac{{E_{\text{O}} }}{{B_{\text{O}} }}} \right) > 0\;{\text{iff}}\;\alpha \Updelta > 0 \, $$

It follows that \( \frac{\partial }{\partial \alpha }{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) > 0 \) and \( \frac{\partial }{\partial \alpha }{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) < 0 \) for all 0 < α < 1. ■

Proof of Observation 2

Using

$$ \frac{\partial }{{\partial E_{O} }}{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = c_{\text{e}} \sqrt {\tfrac{1}{8}D} \left( {\frac{{C_{\text{H}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{C_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }}} \right), $$

it is easy to verify that this partial derivate is positive iff Condition (13) is fulfilled. Similarly,

$$ \frac{\partial }{{\partial E_{H} }}{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = c_{\text{e}} \sqrt {\tfrac{1}{8}D} \left( {\frac{{C_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }} - \frac{{C_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right), $$

which is positive iff condition (14) is fulfilled. Furthermore,

$$ \frac{\partial }{{\partial E_{\text{O}} }}{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{c_{\text{e}} E_{\text{H}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{c_{\text{e}} E_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }}} \right), $$

and

$$ \frac{\partial }{{\partial E_{\text{H}} }}{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{c_{\text{e}} E_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }} - \frac{{c_{\text{e}} E_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right). $$

Note that

$$ \left( {\frac{{c_{\text{e}} E_{\text{H}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{c_{\text{e}} E_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }}} \right) < 0\quad {\text{iff}} $$
$$ E_{\text{O}} < \frac{{ - \alpha \gamma_{\text{O}} }}{{c_{\text{e}} }}\left( {\frac{{2B_{\text{H}} + c_{\text{e}} E_{\text{H}} }}{{B_{\text{H}} + c_{\text{e}} E_{\text{H}} }}} \right) < 0 $$

and

$$ \left( {\frac{{c_{\text{e}} E_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }} - \frac{{c_{\text{e}} E_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right) < 0\quad {\text{iff}} $$
$$ E_{\text{H}} < \frac{{ - \alpha \gamma_{\text{H}} }}{{c_{\text{e}} }}\left( {\frac{{2B_{\text{O}} + c_{\text{e}} E_{\text{O}} }}{{B_{\text{O}} + c_{\text{e}} E_{\text{O}} }}} \right) < 0, $$

from which Observation 2 follows. ■

Proof of Observation 3

Note that

$$ \frac{\partial }{{\partial \gamma_{\text{O}} }}{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{\alpha C_{\text{H}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }} - \frac{{\alpha C_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }}} \right), $$

which is negative iff

$$ \gamma_{\text{O}} < \frac{{ - c_{\text{e}} E_{\text{O}} \left( {\alpha C_{\text{H}} + \left( {2 - \alpha )B_{\text{H}} } \right)} \right)}}{{\alpha \left( {\alpha C_{\text{H}} + B_{\text{H}} } \right)}} < 0. $$

Similarly,

$$ \frac{\partial }{{\partial \gamma_{\text{H}} }}{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{\alpha C_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2\frac{{\sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }} - \frac{{\alpha C_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right), $$

is negative iff

$$ \gamma_{\text{H}} < \frac{{ - c_{\text{e}} E_{\text{H}} \left( {\alpha C_{\text{O}} + \left( {2 - \alpha )B_{\text{O}} } \right)} \right)}}{{\alpha \left( {\alpha C_{\text{O}} + B_{\text{O}} } \right)}} < 0. $$

Also,

$$ \frac{\partial }{{\partial \gamma_{\text{O}} }}{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) = \alpha \sqrt {\tfrac{1}{8}D} \left( {\frac{{E_{\text{H}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} - \frac{{E_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }}} \right), $$

is positive iff \( \alpha \Updelta > 0 \), and

$$ \frac{\partial }{{\partial \gamma_{\text{H}} }}{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) = \alpha \sqrt {\tfrac{1}{8}D} \left( {\frac{{E_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} - \frac{{E_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right), $$

is positive if \( \alpha \Updelta < 0 \). Observation 3 follows immediately. ■

The proofs of Observation 4 and 5(ii) are trivial and will be omitted.

Proof of Observation 5 (i)

Note that

$$ \begin{aligned} \frac{\partial }{{\partial c_{\text{e}} }}{\text{TC}}\left( {Q_{\text{W}}^{*} } \right) = & \,\sqrt {\tfrac{1}{8}D} \left( {\frac{{C_{0} E_{\text{H}} + C_{\text{H}} E_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} + 2E_{\text{O}} \frac{{\sqrt {B_{\text{H}} } }}{{\sqrt {B_{\text{O}} } }}} \right) + \\ & \sqrt {\tfrac{1}{8}D} \left( {2E_{\text{H}} \frac{{\sqrt {B_{\text{O}} } }}{{\sqrt {B_{\text{H}} } }} - \frac{{C_{\text{O}} E_{\text{O}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }} - \frac{{C_{\text{H}} E_{\text{H}} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right). \\ \end{aligned} $$

Careful analysis shows that this is positive iff

$$ 2B_{\text{O}} B_{\text{H}} \left( {E_{\text{O}} B_{\text{H}} + E_{\text{H}} B_{\text{O}} } \right) + \alpha \left( {1 - \alpha } \right)\Updelta^{2} > 0. $$

Furthermore,

$$ \frac{\partial }{{\partial c_{\text{e}} }}{\text{TE}}\left( {Q_{\text{W}}^{*} } \right) = \sqrt {\tfrac{1}{8}D} \left( {\frac{{2E_{\text{H}} E_{\text{O}} }}{{\sqrt {B_{\text{H}} B_{\text{O}} } }} - \frac{{E_{\text{O}}^{ 2} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{O}}^{2} }} - \frac{{E_{\text{H}}^{ 2} \sqrt {B_{\text{H}} B_{\text{O}} } }}{{B_{\text{H}}^{2} }}} \right), $$

which is negative iff \( \alpha^{2} \Updelta^{2} > 0 \). Together these results constitute Observation 5(i). ■

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Veen, J.A.A., Venugopal, V. (2014). Economic and Environmental Performance of the Firm: Synergy or Trade-Off? Insights from the EOQ Model. In: Choi, TM. (eds) Handbook of EOQ Inventory Problems. International Series in Operations Research & Management Science, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7639-9_6

Download citation

Publish with us

Policies and ethics