Skip to main content

Normal Numbers and Pseudorandom Generators

  • Conference paper
  • First Online:
Book cover Computational and Analytical Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 50))

Abstract

For an integer b ≥ 2 a real number α is b -normal if, for all m > 0, every m-long string of digits in the base-b expansion of α appears, in the limit, with frequency b m. Although almost all reals in [0, 1] are b-normal for every b, it has been rather difficult to exhibit explicit examples. No results whatsoever are known, one way or the other, for the class of “natural” mathematical constants, such as \(\pi,\,e,\,\sqrt{2}\) and log2. In this paper, we summarize some previous normality results for a certain class of explicit reals and then show that a specific member of this class, while provably 2-normal, is provably not 6-normal. We then show that a practical and reasonably effective pseudorandom number generator can be defined based on the binary digits of this constant and conclude by sketching out some directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, D.H., Crandall, R.E.: Random generators and normal numbers. Exp. Math. 11(4), 527–546 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailey, D.H., Misiurewicz, M.: A strong hot spot theorem. Proc. Am. Math. Soc. 134(9), 2495–2501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66(218), 903–913 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bailey, D.H., Borwein, J.M., Crandall, R.E., Pomerance, C.: On the binary expansions of algebraic numbers. J. Number Theor. Bordeaux 16, 487–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, J., Bailey, D.H.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. AK Peters, Natick (2008)

    Google Scholar 

  6. Cassels, J.W.S.: On a problem of Steinhaus about normal numbers. Colloq. Math. 7, 95–101 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. London Math. Soc. 8, 254–260 (1933)

    Article  MathSciNet  Google Scholar 

  8. Copeland, A.H., Erdös, P.: Note on normal numbers. Bull. Am. Math. Soc. 52, 857–860 (1946)

    Article  MATH  Google Scholar 

  9. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. 15th IEEE Symposium on Computer Arithmetic. IEEE Computer Society, pp. 155–162. California University, Berkeley (2001)

    Google Scholar 

  10. Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1998)

    Google Scholar 

  11. L’Ecuyer, P.: Random number generation. In: Gentle, J.E., Haerdle, W., Mori, Y. (eds.) Handbook of Computational Statistics, Chap. II.2. Springer, Berlin (2004)

    Google Scholar 

  12. L’Ecuyer, P., Simard, R.: TestU01: A C Library for empirical testing of random number generators. ACM Trans. Math. Software 33, 15 (2007)

    Article  MathSciNet  Google Scholar 

  13. Pollington, A.D.: The Hausdorff dimension of a set of normal numbers. Pacific J. Math. 95, 193–204 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Queffelec, M.: Old and new results on normality. Lecture Notes – Monograph Series, Dynamics and Stochastics, vol. 48, pp. 225–236. Institute of Mathematical Statistics, Beachwood (2006)

    Google Scholar 

  15. Schmidt, W.: On normal numbers. Pacific J. Math. 10, 661–672 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stoneham, R.: On absolute \((j,\varepsilon )\)-normality in the rational fractions with applications to normal numbers. Acta Arithmetica 22, 277–286 (1973)

    MATH  Google Scholar 

  17. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the US Department of Energy, under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Bailey .

Editor information

Editors and Affiliations

Additional information

Communicated By Heinz H. Bauschke.

1.1 Appendix

Proof.

α 2, 3 is not 6-normal.

Let Q m be the base-6 expansion of α 2, 3 immediately following position 3m (i.e., after the “decimal” point has been shifted to the right 3m digits). We can write

$$\displaystyle\begin{array}{rcl} Q_{m}& =& {6}^{{3}^{m} }\alpha _{2,3}\bmod 1 \\ & =& \left (\sum _{k=1}^{m}{3}^{{3}^{m}-k }{2}^{{3}^{m}-{3}^{k} }\right )\bmod 1 +\sum _{ k=m+1}^{\infty }{3}^{{3}^{m}-k }{2}^{{3}^{m}-{3}^{k} }.{}\end{array}$$
(1.22)
The first portion of this expression is zero, since all terms in the summation are integers. The small second portion is very accurately approximated by the first term of the series, namely \({(3/4)}^{{3}^{m} }/{3}^{m+1}\). In fact, for all m ≥ 1,
$$\displaystyle\begin{array}{rcl} \frac{{(3/4)}^{{3}^{m} }} {{3}^{m+1}} & <& Q_{m}\; <\; \frac{{(3/4)}^{{3}^{m} }} {{3}^{m+1}} (1 + 2 \cdot 1{0}^{-6}).{}\end{array}$$
(1.23)
Let \(Z_{m} = \lfloor \log _{6}1/Q_{m}\rfloor \) be the number of zeroes in the base-6 expansion of α that immediately follow position 3m. Then for all m ≥ 1, (1.23) can be rewritten
$$\displaystyle\begin{array}{rcl} & & {3}^{m}\log _{ 6}\left (\frac{4} {3}\right ) + (m + 1)\log _{6}3 - 2 \\ & & < Z_{m}\; <\; {3}^{m}\log _{ 6}\left (\frac{4} {3}\right ) + (m + 1)\log _{6}3.{}\end{array}$$
(1.24)
Now let F m be the fraction of zeroes in the base-6 expansion of α up to position 3m + Z m (i.e., up to the end of the block of zeroes that immediately follows position 3m). Clearly
$$\displaystyle\begin{array}{rcl} F_{m}& >& \frac{\sum _{k=1}^{m}Z_{k}} {{3}^{m} + Z_{m}},{}\end{array}$$
(1.25)
since the numerator only counts zeroes in the long stretches. The summation in the numerator satisfies, for all sufficiently large m,
$$\displaystyle\begin{array}{rcl} \sum _{k=1}^{m}Z_{ k}& >& \frac{3} {2}\left ({3}^{m} -\frac{1} {3}\right )\log _{6}\left (\frac{4} {3}\right ) + \frac{m(m + 3)} {2} \log _{6}3 - 2m \\ & >& \frac{3} {2} \cdot {3}^{m}\log _{ 6}\left (\frac{4} {3}\right ) -\frac{1} {2}\log _{6}\left (\frac{4} {3}\right ) - 2m. {}\end{array}$$
(1.26)
Now given any ε > 0, we can write, for all sufficiently large m,
$$\displaystyle\begin{array}{rcl} F_{m}& >& \frac{\frac{3} {2} \cdot {3}^{m}\log _{ 6}\left (\frac{4} {3}\right ) -\frac{1} {2}\log _{6}\left (\frac{4} {3}\right ) - 2m} {{3}^{m} + {3}^{m}\log _{6}\left (\frac{4} {3}\right ) + (m + 1)\log _{6}3} \\ & =& \frac{\frac{3} {2}\log _{6}\left (\frac{4} {3}\right ) - \frac{1} {{3}^{m}}\left (\frac{1} {2}\log _{6}\left (\frac{4} {3}\right ) + 2m\right )} {1 +\log _{6}\left (\frac{4} {3}\right ) + \frac{(m+1)\log _{6}3} {{3}^{m}} } \\ & \geq & \frac{\frac{3} {2}\log _{6}\left (\frac{4} {3}\right )-\epsilon } {1 +\log _{6}\left (\frac{4} {3}\right )+\epsilon }\; \geq \; \frac{1} {2}\log _{2}\left (\frac{4} {3}\right ) - 2\epsilon.{}\end{array}$$
(1.27)
But \(\beta = \frac{1} {2}\log _{2}(4/3)\) (which has numerical value 0. 2075187496) is clearly greater than 1 ∕ 6, since \({(4/3)}^{3} = 64/27 > 2\). This means that infinitely often (namely, whenever \(n = {3}^{m} + Z_{m}\)) the fraction of zeroes in the base-6 expansion of α up to position n exceeds \(\frac{1} {2}(1/6+\beta ) > 1/6\). Thus α is not 6-normal. ■ 

Proof.

Given co-prime integers b ≥ 2 and c ≥ 2, the constant \(\alpha _{b,c} =\sum _{k\geq 1}1/({c}^{k}{b}^{{c}^{k} })\) is not bc-normal.

Let Q m (b, c) be the base-bc expansion of α b, c immediately following position c m. Then

$$\displaystyle\begin{array}{rcl} Q_{m}(b,c)& =& {(bc)}^{{c}^{m} }\alpha _{b,c}\bmod 1 \\ & =& \left (\sum _{k=1}^{m}{c}^{{c}^{m}-k }{b}^{{c}^{m}-{c}^{k} }\right )\bmod 1 +\sum _{ k=m+1}^{\infty }{c}^{{c}^{m}-k }{b}^{{c}^{m}-{c}^{k} }.{}\end{array}$$
(1.28)
As above, the first portion of this expression is zero, since all terms in the summation are integers, and the second portion is very accurately approximated by the first term of the series, namely \({[ \frac{c} {b(c-1)}]}^{{c}^{m} }/{c}^{m+1}\). In fact, for any choice of b and c as above, and for all m ≥ 1,
$$\displaystyle\begin{array}{rcl} \frac{1} {{c}^{m+1}}{\left [ \frac{c} {b(c - 1)}\right ]}^{{c}^{m} }& <& Q_{m}(b,c)\; <\; \frac{1} {{c}^{m+1}}{\left [ \frac{c} {b(c - 1)}\right ]}^{{c}^{m} } \cdot (1 + 1/10).{}\end{array}$$
(1.29)
Let \(Z_{m}(b,c) = \lfloor \log _{bc}1/Q_{m}(b,c)\rfloor \) be the number of zeroes that immediately follow position c m. Then for all m ≥ 1, (1.29) can be rewritten as
$$\displaystyle\begin{array}{rcl} & & {c}^{m}\log _{ bc}\left [\frac{b(c - 1)} {c} \right ] + (m + 1)\log _{bc}c - 2 \\ & & < Z_{m}(b,c)\; <\; {c}^{m}\log _{ bc}\left [\frac{b(c - 1)} {c} \right ] + (m + 1)\log _{bc}c.{}\end{array}$$
(1.30)
Now let F m (b, c) be the fraction of zeroes up to position c m + Z m (b, c). Clearly
$$\displaystyle\begin{array}{rcl} F_{m}(b,c)& >& \frac{\sum _{k=1}^{m}Z_{k}(b,c)} {{c}^{m} + Z_{m}(b,c)},{}\end{array}$$
(1.31)
since the numerator only counts zeroes in the long stretches. The summation in the numerator of F m (b, c) satisfies
$$\displaystyle\begin{array}{rcl} \sum _{k=1}^{m}Z_{ k}(b,c)& >& \frac{c} {c - 1}\left ({c}^{m} -\frac{1} {c}\right )\log _{bc}\left [\frac{b(c - 1)} {c} \right ] + \frac{m(m + 3)} {2} \log _{bc}c - 2m \\ & >& \frac{{c}^{m+1}} {c - 1}\log _{bc}\left [\frac{b(c - 1)} {c} \right ] - \frac{1} {c - 1}\log _{bc}\left [\frac{b(c - 1)} {c} \right ] - 2m. {}\end{array}$$
(1.32)
Thus given any ε > 0, we can write, for all sufficiently large m,
$$\displaystyle\begin{array}{rcl} F_{m}(b,c)& >& \frac{\frac{{c}^{m+1}} {c-1} \log _{bc}\left [\frac{b(c-1)} {c} \right ] - \frac{1} {c-1}\log _{bc}\left [\frac{b(c-1)} {c} \right ] - 2m} {{c}^{m} + {c}^{m}\log _{bc}\left (\frac{b(c-1)} {c} \right ) + (m + 1)\log _{bc}c} \\ & =& \frac{ \frac{c} {c-1}\log _{bc}\left [\frac{b(c-1)} {c} \right ] - \frac{1} {{c}^{m}}\left ( \frac{1} {c-1}\log _{bc}\left [\frac{b(c-1)} {c} \right ] + 2m\right )} {1 +\log _{bc}\left [\frac{b(c-1)} {c} \right ] + \frac{(m+1)\log _{bc}c} {{c}^{m}} } \\ & \geq & \frac{ \frac{c} {c-1}\log _{bc}\left [\frac{b(c-1)} {c} \right ]-\epsilon } {1 +\log _{bc}\left [\frac{b(c-1)} {c} \right ]+\epsilon } \\ & \geq & \frac{c} {c - 1} \cdot \frac{\log _{bc}\left [\frac{b(c-1)} {c} \right ]} {1 +\log _{bc}\left [\frac{b(c-1)} {c} \right ]} - 2\epsilon {}\end{array}$$
(1.33)
$$\displaystyle\begin{array}{rcl} & =& T(b,c) - 2\epsilon,{}\end{array}$$
(1.34)
where
$$\displaystyle\begin{array}{rcl} T(b,c)& =& \frac{c} {c - 1} \cdot \frac{\log _{bc}\left [\frac{b(c-1)} {c} \right ]} {1 +\log _{bc}\left [\frac{b(c-1)} {c} \right ]}.{}\end{array}$$
(1.35)
To establish the desired result that T(b, c) > 1 ∕ (bc), first note that
$$\displaystyle\begin{array}{rcl} T(b,c)& >& \frac{1} {2}\log _{bc}\left [\frac{b(c - 1)} {c} \right ]\; \geq \; \frac{1} {2}\log _{bc}\left (\frac{b} {2}\right ).{}\end{array}$$
(1.36)
Raise bc to the power of the right-hand side and also to the power 1 ∕ (bc). Then it suffices to demonstrate that
$$\displaystyle\begin{array}{rcl} \frac{b} {2}& >&{ \left [{(bc)}^{1/(bc)}\right ]}^{2}.{}\end{array}$$
(1.37)
The right-hand side is bounded above by \({({e}^{1/e})}^{2} = 2.0870652286\ldots\). Thus this inequality is clearly satisfied whenever b ≥ 5.

If we also presume that c ≥ 5, then by examining the middle of (1.36), it suffices to demonstrate that

$$\displaystyle\begin{array}{rcl} \frac{1} {2}\log _{bc}\frac{4b} {5} & >& \frac{1} {bc}{}\end{array}$$
(1.38)
or
$$\displaystyle\begin{array}{rcl} \frac{4b} {5} & >&{ \left ({e}^{1/e}\right )}^{2}.{}\end{array}$$
(1.39)
But this is clearly satisfied whenever b ≥ 3. For the case b = 2 and c ≥ 5, we can write
$$\displaystyle\begin{array}{rcl} T(b,c)& =& \frac{c} {c - 1} \cdot \frac{\log _{2c}\left [\frac{2(c-1)} {c} \right ]} {1 +\log _{2c}\left [\frac{2(c-1)} {c} \right ]}\; \geq \; \frac{\log _{2c}\left [\frac{2(c-1)} {c} \right ]} {1 +\log _{10}2},{}\end{array}$$
(1.40)
so by similar reasoning it suffices to demonstrate that
$$\displaystyle\begin{array}{rcl} \frac{2(c - 1)} {c} & >&{ \left ({e}^{1/e}\right )}^{1+\log _{10}2}\; =\; 1.61384928833\ldots.{}\end{array}$$
(1.41)
But this is clearly satisfied whenever c ≥ 6.

The five remaining cases, namely (2, 3), (2, 5), (3, 2), (3, 4), (4, 3), are easily verified by explicitly computing numerical values of T(b, c) using (1.35). As it turns out, the simple case that we worked out in detail above, namely b = 2 and c = 3, is the worst case, in the sense that for all other (b, c), the fraction T(b, c) exceeds the natural frequency 1 ∕ (bc) by greater margins. ■ 

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Bailey, D.H., Borwein, J.M. (2013). Normal Numbers and Pseudorandom Generators. In: Bailey, D., et al. Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7621-4_1

Download citation

Publish with us

Policies and ethics