Skip to main content

Apoproteins and Cell Surface Receptors Regulating Lipoprotein Metabolism in the Setting of Type 2 Diabetes

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Patients with diabetes, especially type 2 diabetes mellitus (T2DM), are classified as coronary heart disease risk equivalents secondary to their high incidence of clinical events secondary to multiple risk factors. Most prominent of these risk factors are abnormalities of lipids and lipoproteins including sterols, fatty acids, and phospholipids. This chapter provides insight into the complexities of both cellular lipid homeostasis and lipoprotein trafficking of plasma lipids. Central to that is a discussion of the physiology and pathophysiology of multiple cell surface lipid transporters, the lipoprotein-associated apolipoproteins, and lipolytic enzymes. Accurate clinical cardiovascular risk assessment and therapeutic options are best facilitated by mastering a thorough understanding of these biologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125:e12–230.

    Google Scholar 

  2. Roberts WC. It’s the cholesterol, stupid! Am J Cardiol. 2010;106:1364–6.

    PubMed  Google Scholar 

  3. Williams KJ, Tabas I. Lipoprotein retention- and clues for atheroma regression. Arterioscler Thromb Vasc Biol. 2005;25:1536–40.

    CAS  PubMed  Google Scholar 

  4. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276:34–44.

    CAS  PubMed  Google Scholar 

  5. Biggerstaff KD, Wooten JS. Understanding lipoproteins as transporters of cholesterol and other lipids. Adv Physiol Educ. 2004;28:105–6.

    PubMed  Google Scholar 

  6. Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev. 2009;10:403–11.

    CAS  PubMed  Google Scholar 

  7. Alaupovic P. The concept of apolipoprotein-defined lipoprotein families and its clinical significance. Curr Atheroscler Rep. 2003;5:459–67.

    PubMed  Google Scholar 

  8. Kwitterovich PO. The Johns Hopkins textbook of dyslipidemia. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkens; 2010.

    Google Scholar 

  9. Glickman RM, Rogers M, Glickman JN. Apolipoprotein B synthesis by human liver and intestine in vitro. Proc Natl Acad Sci. 1986;83:5296–300.

    CAS  PubMed  Google Scholar 

  10. Huang R, Silva RA, Jerome WG, Kontush A, Chapman MJ, Curtiss LK, et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol. 2011;18:416–22.

    Google Scholar 

  11. Packard CJ, Demant T, Stewart JP, Bedford D, Caslake MJ, Schwertfeger G, et al. Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res. 2000;41:305–18.

    CAS  PubMed  Google Scholar 

  12. Sniderman AD, Scantlebury T, Cianflone K. Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med. 2001;135:447–59.

    CAS  PubMed  Google Scholar 

  13. Contois JH, McConnell JP, Sethi AA, Csako G, Devaraj S, Hoefner DM, et al. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 2009;55:407–19.

    Google Scholar 

  14. Hoofnagle AN, Vaisar T, Mitra P, Chait A. HDL lipids and insulin resistance. Curr Diab Rep. 2010;10:78–86.

    CAS  PubMed  Google Scholar 

  15. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos K. HDL biogenesis and functions: role of HDL quality in atherosclerosis. Atherosclerosis. 2010;208:3–9.

    CAS  PubMed  Google Scholar 

  16. Rosenson RS, Brewer Jr HB, Chapman MJ, Fazio S, Hussain MM, Kontush A, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57:392–410.

    CAS  PubMed  Google Scholar 

  17. Lau JF, Smith DA. Advanced lipoprotein testing: recommendations based on current evidence. Endocrinol Metab Clin North Am. 2009;38:1–31.

    CAS  PubMed  Google Scholar 

  18. Rifai N, Warnick GR, Dominiczak MH. Handbook of lipoprotein testing. 2nd ed. Washington DC:AACC Press; 2000.

    Google Scholar 

  19. Freedman DS, Otvos JD, Jeyarajah EJ, Barboriak JJ, Anderson AJ, Walker JA. Relation of lipoprotein subclasses as measured by proton nuclear magnetic resonance spectroscopy to coronary artery disease. Arterioscler Thromb Vasc Biol. 1998;18:1046–53.

    CAS  PubMed  Google Scholar 

  20. Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA, Reitz RE, et al. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler Thromb Vasc Biol. 2009;29:1975–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  22. Sniderman AD. Can conclusions that seem discordant be concordant after all? J Clin Lipidol. 2011;5:261–3.

    PubMed  Google Scholar 

  23. Dayspring T, Dall T, Abuhajir M. Moving beyond LDL-C: incorporating lipoprotein particle numbers and geometric parameters to improve clinical outcomes. Res Rep Clin Cardiol. 2010;1:1–10.

    CAS  Google Scholar 

  24. Marniemi J, Maki J, Maatela J, Jorma J, Jarvisalo J, Impivarra O. Poor applicability of the Friedewald formula in the assessment of serum LDL cholesterol for clinical purposes. Clin Biochem. 1995;28:285–9.

    CAS  PubMed  Google Scholar 

  25. Contois JH, Warnick GR, Sniderman AD. Reliability of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement. J Clin Lipidol. 2011;5:264–72.

    PubMed  Google Scholar 

  26. Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24.

    CAS  PubMed  Google Scholar 

  27. Yu L, Bharadwaj S, Brown JM, Ma Y, Du W, Davis MA, et al. Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J Biol Chem. 2006;10(281):6616–24.

    Google Scholar 

  28. Rigotti A, Miettinen HE, Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev. 2003;24:357–87.

    CAS  PubMed  Google Scholar 

  29. Brewer Jr HB, Santamarina-Fojo S. New insights into the role of the adenosine triphosphate-binding cassette transporters in high-density lipoprotein metabolism and reverse cholesterol transport. Am J Cardiol. 2003;91(7A):3E–11.

    CAS  PubMed  Google Scholar 

  30. Goldstein JL, Brown MS. Molecular medicine. The cholesterol quartet. Science. 2001;292:1310–2.

    CAS  PubMed  Google Scholar 

  31. Williams SE, Ashcom JD, Argraves WS, Strickland DK. A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem. 1992;5(267):9035–40.

    Google Scholar 

  32. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezón E, Champagne E, et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature. 2003;421:75–9.

    CAS  PubMed  Google Scholar 

  33. van der Velde AE, Brufau G, Groen AK. Transintestinal cholesterol efflux. Curr Opin Lipidol. 2010;21:167–71.

    PubMed  Google Scholar 

  34. Ballantyne CM. Clinical lipidology: a companion to Braunwald’s heart disease. 1st ed. Philadelphia: Saunders/Elsevier; 2009. Chapter 3.

    Google Scholar 

  35. Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 2008;7:508–19.

    CAS  PubMed  Google Scholar 

  36. Mathur SN, Watt KR, Field FJ. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid. J Lipid Res. 2007;48:395–404.

    CAS  PubMed  Google Scholar 

  37. Bosner MS, Lange LG, Stenson WF, Ostlund Jr RE. Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res. 1999;40:302–8.

    CAS  PubMed  Google Scholar 

  38. Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Rudel LL. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res. 2012;53:95–104.

    CAS  PubMed  Google Scholar 

  39. Stieger B. Recent insights into the function and regulation of the bile salt export pump (ABCB11). Cur Opin Lipidol. 2009;20:176–81.

    CAS  Google Scholar 

  40. Blade AM, Fabritius MA, Hou L, Weinberg RB, Shelness GS. Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion. J Lipid Res. 2011;52:237–44.

    CAS  PubMed  Google Scholar 

  41. Simon T, Cook VR, Rao A, Weinberg RB. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J Lipid Res. 2011;52:1984–94.

    CAS  PubMed  Google Scholar 

  42. The third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation. 2002;106:3145–21.

    Google Scholar 

  43. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    PubMed  Google Scholar 

  44. Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol. 2002;90(8A):22i–9.

    CAS  PubMed  Google Scholar 

  45. Masson D, Jiang XC, Lagrost L, Tall AR. The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J Lip Res. 2009;S201–6.

    Google Scholar 

  46. Alaupovic P. The concept of apolipoprotein-defined lipoprotein families and its clinical significance. Curr Atheroscler Rep. 2003;5:459–67.

    PubMed  Google Scholar 

  47. Rezaee F, Casetta B, Levels JH, Speijer D, Meijers JC. Proteomic analysis of high-density lipoprotein. Proteomics. 2006;6:721–30.

    CAS  PubMed  Google Scholar 

  48. Blade AM, Fabritius MA, Hou L, Weinberg RB, GrShelness GS. Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion. J Lipid Res. 2011;52:237–44.

    CAS  PubMed  Google Scholar 

  49. Olivecrona G, Beisiegel U. Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons. Arterioscler Thromb Vasc Biol. 1997;17:1545–9.

    CAS  PubMed  Google Scholar 

  50. Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, et al. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res. 2010;51:150–61.

    PubMed  Google Scholar 

  51. Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999;19:472–84.

    CAS  PubMed  Google Scholar 

  52. Green PH, Lefkowitch JH, Glickman RM, Riley JW, Quinet E, Blum CB. Apolipoprotein localization and quantitation in the human intestine. Gastroenterology. 1982;83(6):1223–30.

    CAS  PubMed  Google Scholar 

  53. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic disease. N Engl J Med. 1989;320:1060–8.

    CAS  PubMed  Google Scholar 

  54. Wong K, Ryan RO. Characterization of apolipoprotein A-V structure and mode of plasma triacylglycerol regulation. Curr Opin Lipidol. 2007;18:319–24.

    CAS  PubMed  Google Scholar 

  55. Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing C, Peelman F, et al. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis. 2010;211:1–8.

    CAS  PubMed  Google Scholar 

  56. Ory DS. Chylomicrons and lipoprotein lipase at the endothelial surface: bound and GAG-ged? Cell Metab. 2007;5:229–31.

    CAS  PubMed  Google Scholar 

  57. Nilssona SK, Heerenb J, Olivecronaa G, Merkel M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis. 2011;219:15–21.

    Google Scholar 

  58. Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaiere CL. Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J Biol Chem. 1990;265:4266–72.

    CAS  PubMed  Google Scholar 

  59. Niemeier A, Gafvels M, Heeren J, Meyer N, Angelin B, Beisiegell U. VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res. 1996;37:1733–42.

    CAS  PubMed  Google Scholar 

  60. Cohn JS, Tremblay M, Batal R, Jacques H, Veilleux L, Rodriguez C, et al. Plasma kinetics of VLDL and HDL apoC-I in normolipidemic and hypertriglyceridemic subjects. J Lipid Res. 2002;43:1680–7.

    CAS  PubMed  Google Scholar 

  61. Bouchard C, Dubuc G, Davignon J, Bernier L, Cohn JS. Post-transcriptional regulation of apoC-I synthesis and secretion in human HepG2 cells. Atherosclerosis. 2005;178:257–64.

    CAS  PubMed  Google Scholar 

  62. Gautier T, Masson D, de Barros JP, Athias A, Gambert P, Aunis D, et al. Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J Biol Chem. 2000;75:37504–9.

    Google Scholar 

  63. Lenich C, Brecher B, Makrides S, Chobanian A, Zannis VI. Apolipoprotein gene expression in the rabbit: abundance, size, and distribution of apolipoprotein mRNA species in different tissues. J Lipid Res. 1988;29:755–64.

    CAS  PubMed  Google Scholar 

  64. Mauger JF, Couture P, Bergeron N, Lamarche B. Apolipoprotein C-III isoforms: kinetics and relative implication in lipid metabolism. J Lipid Res. 2006;47:1212–8.

    CAS  PubMed  Google Scholar 

  65. Chan DC, Chen MM, Ooi EM, Watts GF. An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor? Int J Clin Pract. 2008;62:799–809.

    CAS  PubMed  Google Scholar 

  66. Brewer Jr HB, Increasing HDL. Cholesterol levels. N Engl J Med. 2004;350:1491–4.

    CAS  PubMed  Google Scholar 

  67. Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol. 2002;90(Suppl):23i–9.

    Google Scholar 

  68. Sniderman AD, De Graaf J, Couture P, Williams K, Kiss RS, Watts GF. Regulation of plasma LDL: the apoB paradigm. Clin Sci (Lond). 2009;118:333–9.

    Google Scholar 

  69. Morton RE, Gnizak HM, Greene DJ, Cho KH, Paromov VM. Lipid transfer inhibitor protein (apolipoprotein F) concentration in normolipemic and hyperlipidemic subjects. J Lip Res. 2008;49:127–35.

    CAS  Google Scholar 

  70. Schonfeld G. Familial hypobetalipoproteinemia: a review. J Lip Res. 2003;44:878–83.

    CAS  Google Scholar 

  71. Yokoyama S. HDL biogenesis and cellular cholesterol homeostasis. Ann Med. 2008;40:29–38.

    CAS  Google Scholar 

  72. Brewer Jr HB, Remaley AT, Neufeld EB, Basso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004;24:1755–60.

    CAS  PubMed  Google Scholar 

  73. McGillicuddy FC, Reilly MP, Rader DJ. Adipose modulation of high-density lipoprotein cholesterol: implications for obesity, high-density lipoprotein metabolism, and cardiovascular disease. Circulation. 2011;124:1602–5.

    PubMed  Google Scholar 

  74. Imachi H, Murao K, Sayo Y, Hosokawa H, Sato M, Niimi M, et al. Evidence for a potential role for HDL as an important source of cholesterol in human adrenocortical tumors via the CLA-1 pathway. Endocr J. 1999;46:27–34.

    CAS  PubMed  Google Scholar 

  75. Nielson MJ, Nielson LB, Moestrup S. High density lipoprotein and innate immunity. Future Lipidol. 2006;1:729–34.

    Google Scholar 

  76. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96:1221–32.

    CAS  PubMed  Google Scholar 

  77. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezon E, Champagne E, et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature. 2003;421:75–9.

    CAS  PubMed  Google Scholar 

  78. Duffy D, Rader DJ. Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport. Circulation. 2006;113:1140–50.

    PubMed  Google Scholar 

  79. Dayspring T. High-density lipoproteins: emerging knowledge. J Cardiometab Syndr. 2007;2:59–62.

    CAS  PubMed  Google Scholar 

  80. Moestrup SK, Kozyraki R. Cubilin, a high-density lipoprotein receptor. Curr Opin Lipidol. 2000;11:133–40.

    CAS  PubMed  Google Scholar 

  81. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53:1270–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Matthan NR, Pencina M, LaRocque JM, Jacques PF, D’Agostino RB, Schaefer EJ, et al. Alterations in cholesterol absorption/synthesis markers characterize Framingham offspring study participants with CHD. J Lipid Res. 2009;50:1927–35.

    CAS  PubMed  Google Scholar 

  83. Assmann G, Cullen P, Erbey J, Ramey DR, Kannenberg F, Schulte H. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case–control analysis of the Prospective Cardiovascular Münster (PROCAM) study. Nutr Metab Cardiovasc Dis. 2006;16:13–21.

    CAS  PubMed  Google Scholar 

  84. Miettinen TA, Gylling H, Hallikainen M, Juonala M, Räsänen L, Viikari J, et al. Relation of non-cholesterol sterols to coronary risk factors and carotid intima-media thickness: the Cardiovascular Risk in Young Finns Study. Atherosclerosis. 2010;209(2):592–7.

    CAS  PubMed  Google Scholar 

  85. Miettinen TA, Gylling H, Strandberg T, Sarna S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S investigators. BMJ. 1998;316(7138):1127–30.

    CAS  PubMed  Google Scholar 

  86. Strandberg TE, Tilvis RS, Pitkala KH, Miettinen TA. Cholesterol and glucose metabolism and recurrent cardiovascular events among the elderly: a prospective study. J Am Coll Cardiol. 2006;48:708–14.

    CAS  PubMed  Google Scholar 

  87. Gylling H, Miettinen TA. Cholesterol absorption, synthesis, and LDL metabolism in NIDDM. Diabetes Care. 1997;20:90–5.

    CAS  PubMed  Google Scholar 

  88. Gylling H, Miettinen TA. Cholesterol absorption and lipoprotein metabolism in type II diabetes mellitus with and without coronary artery disease. Atheroscerosis. 1996;126:325–32.

    CAS  Google Scholar 

  89. Paramsothy P, Knopp RH, Kahn SE, Retzlaff BM, Fish B, Ma L, et al. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity. Am J Clin Nutr. 2011;94:1182–8.

    CAS  PubMed  Google Scholar 

  90. O’Meara NM, Devery RA, Owens D, et al. Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes. 1990;39:626–33.

    PubMed  Google Scholar 

  91. Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism Clin Exp. 2007;56:430–8.

    CAS  Google Scholar 

  92. Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia. 2006;49:1008–16.

    CAS  PubMed  Google Scholar 

  93. Tomkin GH. The intestine as a regulator of cholesterol homeostasis in diabetes. Atherosclerosis. 2011;Suppl 9:27–32.

    Google Scholar 

  94. Gaudiani LM, Lewin A, Meneghini L, Perevozskaya I, Plotkin D, Mitchel Y, et al. Efficacy and safety of ezetimibe co-administered with simvastatin in thiazolidinedione-treated type 2 diabetic patients. Diabetes Obes Metab. 2005;7:88–97.

    CAS  PubMed  Google Scholar 

  95. van Himbergen TM, Matthan NR, Resteghini NA, Otokozawa S, Ai M, Stein EA, et al. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J Lipid Res. 2009;50:730–9.

    PubMed  Google Scholar 

  96. Szapary PO, Rader DJ. The triglyceride-high-density lipoprotein axis: an important target of therapy? Am Heart J. 2004;148:211–21.

    CAS  PubMed  Google Scholar 

  97. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–31.

    CAS  PubMed  Google Scholar 

  98. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes. 2005;54:1676–83.

    CAS  PubMed  Google Scholar 

  100. Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol. 2001;12:151–7.

    CAS  PubMed  Google Scholar 

  101. Gill JM, Brown JC, Bedford D, Wright DM, Cooney J, Hughes DA, et al. Hepatic production of VLDL1 but not VLDL2 is related to insulin resistance in normoglycaemic middle-aged subjects. Atherosclerosis. 2004;176:49–56.

    CAS  PubMed  Google Scholar 

  102. Chan DC, Watts GF, Gan SK, Wong ATY, Ooi EMM, Barrett PHR. Nonalcoholic fatty liver disease as the transducer of hepatic oversecretion of very-low-density lipoprotein–apolipoprotein B-100 in obesity. Arterioscler Thromb Vasc Biol. 2010;30:1043–50.

    CAS  PubMed  Google Scholar 

  103. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab. 2011;96(10):E1596–605.

    CAS  PubMed  Google Scholar 

  104. Adiels M, Boren J, Caslake MJ, Stewart P, Soro A, Westerbacka J, et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1697–703.

    CAS  PubMed  Google Scholar 

  105. Adiels M, Olofsson SO, Taskinen MR, Boren J. Diabetic dyslipidaemia. Curr Opin Lipidol. 2006;17:238–46.

    CAS  PubMed  Google Scholar 

  106. Asp L, Claesson C, Boren J, Olofsson S-O. ADP-ribosylation factor 1 and its activation of phospholipase D are important for the assembly of very low density lipoproteins. J Biol Chem. 2000;275:26285–92.

    CAS  PubMed  Google Scholar 

  107. Brown AM, Gibbons GF. Insulin inhibits the maturation phase of VLDL assembly via a phosphoinositide 3-kinase-mediated event. Arterioscler Thromb Vasc Biol. 2001;21:1656–61.

    CAS  PubMed  Google Scholar 

  108. Packard CJ, Demant T, Stewart JP, Bedford D, Caslake MJ, Schwertfeger G, et al. Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res. 2000;41:305–18.

    CAS  PubMed  Google Scholar 

  109. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2008;28:1225–36.

    CAS  PubMed  Google Scholar 

  110. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52:453–62.

    CAS  PubMed  Google Scholar 

  111. Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaiere CL. Lipoprotein ApoC-II activation of lipoprotein lipase: modulation by apolipoprotein A-IV. J Biol Chem. 1990;265:4266–72.

    CAS  PubMed  Google Scholar 

  112. Pruneta-Deloche V, Ponsin G, Groisne L, Fruchart-Najib J, Lagarde M, Moulin P. Postprandial increase of plasma apoAV concentrations in type 2 diabetic patients. Atherosclerosis. 2005;181:403–5.

    CAS  PubMed  Google Scholar 

  113. Kahri J, Fruchart-Najib J, Matikainen N, Fruchart JC, Vakkilainen J, Taskinen MR. The increase of apolipoprotein A-V during postprandial lipemia parallels the response of triglyceride-rich lipoproteins in type 2 diabetes: no relationship between apoA-V and postheparin plasma lipolytic activity. Diabetes Care. 2007;8:2083–5.

    Google Scholar 

  114. Talmud PJ, Cooper JA, Hattori H, Miller IP, Miller GJ, Humphries SE. The apolipoprotein A-V genotype and plasma apolipoprotein A-V and triglyceride levels: prospective risk of type 2 diabetes. Results from the Northwick Park Heart Study II. Diabetologia. 2006;49:2337–40.

    CAS  PubMed  Google Scholar 

  115. Moen CJ, Tholens AP, Voshol PJ, de Haan W, Havekes LM, Gargalovic P, et al. The Hyplip2 locus causes hypertriglyceridemia by decreased clearance of triglycerides. J Lipid Res. 2007;48:2182–92.

    CAS  PubMed  Google Scholar 

  116. van der Ham RL, Alizadeh Dehnavi R, Berbée JF, Putter H, de Roos A, Romijn JA, et al. Plasma apolipoprotein CI and CIII levels are associated with increased plasma triglyceride levels and decreased fat mass in men with the metabolic syndrome. Diabetes Care. 2009;32:184–6.

    PubMed  Google Scholar 

  117. Twickler T, Dallinga-Thie GM, Chapman MJ, Cohn JS. Remnant lipoproteins and atherosclerosis. Curr Atheroscler Rep. 2005;7:140–7.

    CAS  PubMed  Google Scholar 

  118. Björkegren J. Dual roles of apolipoprotein CI in the formation of atherogenic remnants. Curr Atheroscler Rep. 2006;8:1–2.

    PubMed  Google Scholar 

  119. Hamsten A, Silveira A, Boquist S, Tang R, Bond G, de Faire U, et al. The apolipoprotein CI content of triglyceride-rich lipoproteins independently predicts early atherosclerosis in healthy middle-aged men. J Am Coll Cardiol. 2005;45:1013–7.

    CAS  PubMed  Google Scholar 

  120. Huang S, Qiao J, Li R, Wang L, Li M, Wang L, et al. Can serum apolipoprotein C-I demonstrate metabolic abnormality early in women with polycystic ovary syndrome? Fertil Steril. 2010;94:205–10.

    CAS  PubMed  Google Scholar 

  121. Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab. 2004;89:3949–55.

    CAS  PubMed  Google Scholar 

  122. Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation. 2000;102:1886–92.

    CAS  PubMed  Google Scholar 

  123. Lee SJ, Moye LA, Campos H, Williams GH, Sacks FM. Hypertriglyceridemia but not diabetes status is associated with VLDL containing apolipoprotein CIII in patients with coronary heart disease. Atherosclerosis. 2003;167:293–302.

    CAS  PubMed  Google Scholar 

  124. Chen M, Breslow JL, Li W, Leff T. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res. 1994;35:1918–24.

    CAS  PubMed  Google Scholar 

  125. Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest. 2004;114:1493–503.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ladias JAA, Hadzopoulou-Cladaras M, Kardassis D, Cardot P, Cheng J, Zannis V, et al. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J Biol Chem. 1992;267:15849–60.

    CAS  PubMed  Google Scholar 

  127. Caron S, Verrijken A, Mertens I, Samanez CH, Mautino G, Haas JT, et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2011;31(3):513–9.

    CAS  PubMed  Google Scholar 

  128. Ginsberg HN, Brown WV. Apolipoprotein CIII 42 years old and even more interesting. Arterioscler Thromb Vasc Biol. 2011;31:471–3.

    CAS  PubMed  Google Scholar 

  129. Ruby MA, Goldenson B, Orasanu G, Johnston TP, Plutzky J, Krauss RM. VLDL hydrolysis by LPL activates PPAR-α through generation of unbound fatty acids. J Lipid Res. 2010;51:2275–81.

    CAS  PubMed  Google Scholar 

  130. Mendivil CO, Zheng C, Furtado J, Lel J, Sack FM. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30:239–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Tian L, Wu J, Fu M, Xu Y, Jia L. Relationship between apolipoprotein C-III concentrations and high-density lipoprotein subclass distribution. Metabolism Clin Exp. 2009;58:668–74.

    CAS  Google Scholar 

  132. Sacks FM, Zheng C, Cohn JS. Complexities of plasma apolipoprotein C-III metabolism. J Lipid Res. 2011;52:1066–70.

    Google Scholar 

  133. Tomiyasu K, Walsh BW, Ikewaki K, Judge H, Sacks FM. Differential metabolism of human VLDL according to content of ApoE and ApoC-III. Arterioscler Thromb Vasc Biol. 2001;21:1494–500.

    CAS  PubMed  Google Scholar 

  134. Khoo C, Campos H, Judge H, Sacks FM. Effects of estrogenic oral contraceptives on the lipoprotein B particle system defined by apolipoproteins E and C-III content. J Lipid Res. 1999;40:202–12.

    CAS  PubMed  Google Scholar 

  135. Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res. 2007;48:592–9.

    CAS  PubMed  Google Scholar 

  136. Shin MJ, Krauss RM. Apolipoprotein CIII bound to apoB-containing lipoproteins is associated with small, dense LDL independent of plasma triglyceride levels in healthy men. Atherosclerosis. 2010;211:337–41.

    CAS  PubMed  Google Scholar 

  137. Bobik A. Apolipoprotein CIII and atherosclerosis: beyond effects on lipid metabolism. Circulation. 2008;118:702–4.

    PubMed  Google Scholar 

  138. Kawakami A, Osaka M, Tani M, Azuma H, Sacks FM, Shimokado K, et al. Apolipoprotein C-III links hyperlipidemia with vascular endothelial cell dysfunction. Circulation. 2008;118:731–42.

    CAS  PubMed  Google Scholar 

  139. Abe Y, Kawakami A, Osaka M, Uematsu S, Akira S, Shimokado K, et al. Apolipoprotein CIII induces monocyte chemoattractant protein-1 and interleukin 6 expression via Toll-like receptor 2 pathway in mouse adipocytes. Arterioscler Thromb Vasc Biol. 2010;30:2242–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Libby P. Fat fuels the flame: triglyceride-rich lipoproteins and arterial inflammation. Circ Res. 2007;100:299–301.

    CAS  PubMed  Google Scholar 

  141. Dugue-Pujol S, Rousset X, Pastier D, Quang NT, Pautre V, Chamba J, et al. Human apolipoprotein A-II associates with triglyceride-rich lipoproteins in plasma and impairs their catabolism. J Lipid Res. 2006;47:2631–9.

    CAS  PubMed  Google Scholar 

  142. Brewer Jr HB. Hypertriglyceridemia: changes in the plasma lipoproteins associated with an increased risk of cardiovascular disease. Am J Cardiol. 1999;83:3F–12.

    CAS  PubMed  Google Scholar 

  143. Castellani LW, Nguyen CN, Charugundla Weinstein MM, Doan CX, Blaner WS, Wongsiriroj N, et al. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J Bio Chem. 2008;283:11633–44.

    CAS  Google Scholar 

  144. Johnson LA, Arbones-Mainar JM, Fox RG, Pendse AA, Altenburg MK, Kim HS, et al. Apolipoprotein E4 exaggerates diabetic dyslipidemia and atherosclerosis in mice lacking the LDL receptor. Diabetes. 2011;60:2285–94.

    CAS  PubMed  Google Scholar 

  145. Davis WA, Chin E, Jee A, Martins J, Bruce DG, Beilby J, et al. Apolipoprotein E genotype and mortality in Southern European and Anglo-Celt patients with type 2 diabetes: the Fremantle Diabetes Study. Eur J Endocrinol. 2010;163:559–64.

    CAS  PubMed  Google Scholar 

  146. Anthopoulos PG, Hamodrakas SJ, Bagos PG. Apolipoprotein E polymorphisms and type 2 diabetes: a meta-analysis of 30 studies including 5423 cases and 8197 controls. Mol Genet Metab. 2010;100:283–91.

    CAS  PubMed  Google Scholar 

  147. Ward H, Mitrou PN, Bowman R, Luben R, Wareham NJ, Khaw KT, et al. APOE genotype, lipids, and coronary heart disease risk: a prospective population study. Arch Intern Med. 2009;169:1424–9.

    PubMed  Google Scholar 

  148. Camsari A, Tamer L, Aras Ateş N, Pekdemir H, Ciçek D, Ercan B, et al. Apolipoprotein E polymorphism in diabetic and non-diabetic patients: does it really contribute to atherosclerosis? Acta Cardiol. 2005;60:409–14.

    PubMed  Google Scholar 

  149. Duchateau PN, Pullinger CR, Orellana RE, Kunitake ST, Naya-Vigne J, O’Connor PM, et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J Biol Chem. 1997;272:25576–82.

    CAS  PubMed  Google Scholar 

  150. Albert TS, Duchateau PN, Deeb SS, Pullinger CR, Cho MH, Heilbron DC, et al. Apolipoprotein L-I is positively associated with hyperglycemia and plasma triglycerides in CAD patients with low HDL. J Lipid Res. 2005;46:469–74.

    CAS  PubMed  Google Scholar 

  151. Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:785–91.

    CAS  PubMed  Google Scholar 

  152. Longato L, Tong M, Wands JR, de la Monte SM. High fat diet induced hepatic steatosis and insulin resistance: role of dysregulated ceramide metabolism. Hepatol Res. 2011. doi: 10.1111/j.1872-034X.2011.00934.x [Epub ahead of print].

  153. Chan DC, Barrett PH, Ooi EM, Ji J, Chan DT, Watts GF. Very low density lipoprotein metabolism and plasma adiponectin as predictors of high-density lipoprotein apolipoprotein A-I kinetics in obese and nonobese men. J Clin Endocrinol Metab. 2009;94:989–97.

    CAS  PubMed  Google Scholar 

  154. Ooi EM, Watts GF, Farvid MS, Chan DC, Allen MC, Zilko SR, et al. High-density lipoprotein apolipoprotein A-I kinetics in obesity. Obes Res. 2005;13:1008–16.

    CAS  PubMed  Google Scholar 

  155. Julia Z, Duchene E, Fournier N, Bellanger N, Chapman MJ, Le Goff W, et al. Postprandial lipemia enhances the capacity of large HDL2 particles to mediate free cholesterol efflux via SR-BI and ABCG1 pathways in type IIB hyperlipidemia. J Lipid Res. 2010;51:3350–8.

    CAS  PubMed  Google Scholar 

  156. Yancey PG, Kawashiri MA, Moore R, Glick JM, Williams DL, Connelly MA, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J Lipid Res. 2004;45:337–46.

    CAS  PubMed  Google Scholar 

  157. Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115:450–8.

    CAS  PubMed  Google Scholar 

  158. Tirosh A, Rudich A, Shochat T, Tekes-Manova D, Israeli E, Henkin Y, et al. Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med. 2007;147:377–85.

    PubMed  Google Scholar 

  159. Tirosh A, Shai I, Bitzur R, Kochba I, Tekes-Manova D, Israeli E, et al. Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care. 2008;31:2032–7.

    CAS  PubMed  Google Scholar 

  160. Mohanlal N, Holman RR. A standardized triglyceride and carbohydrate challenge: the oral triglyceride tolerance test. Diabetes Care. 2004;27:89–94.

    CAS  PubMed  Google Scholar 

  161. Rosenson RS, Davidson MH, Pourfarzib R. Underappreciated opportunities for low-density lipoprotein management in patients with cardiometabolic residual risk. Atherosclerosis. 2010;213:1–7.

    CAS  PubMed  Google Scholar 

  162. Nakajima K, Nakajima Y, Takeichi S, Fujita MQ. ApoB-100 carrying lipoprotein, but not apoB-48, is the major subset of proatherogenic remnant-like lipoprotein particles detected in plasma of sudden cardiac death cases. Atherosclerosis. 2007;194:473–82.

    CAS  PubMed  Google Scholar 

  163. Nakajima K, Nakano T, Tokita Y, Nagamine T, Inazu A, Kobayashi J, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412:1306–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Nakajima K, Nakano T, Moon HD, Nagamine T, Stanhope KL, Havel PJ, et al. The correlation between TG vs remnant lipoproteins in the fasting and postprandial plasma of 23 volunteers. Clin Chim Acta. 2009;404:124–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Langsted A, Nordestgaard BG. Nonfasting lipids, lipoproteins, and apolipoproteins in individuals with and without diabetes: 58 434 individuals from the Copenhagen General Population Study. Clin Chem. 2011;57:482–9.

    CAS  PubMed  Google Scholar 

  166. Nakajima K, Nakano T, Tanaka A. The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clin Chim Acta. 2006;367:36–47.

    CAS  PubMed  Google Scholar 

  167. März W, Scharnagl H, Winkler K, Tiran A, Nauck M, Boehm BO, et al. Low-density lipoprotein triglycerides associated with low-grade systemic inflammation, adhesion molecules, and angiographic coronary artery disease: the Ludwigshafen Risk and Cardiovascular Health study. Circulation. 2004;110:3068–74.

    PubMed  Google Scholar 

  168. Nigon F, Lesnik P, Rouis M, Chapman MJ. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res. 1991;32:1741–53.

    CAS  PubMed  Google Scholar 

  169. Prassl R, Laggner P. Molecular structure of low density lipoprotein: current status and future challenges. Eur Biophys J. 2009;38(2):145–58.

    CAS  PubMed  Google Scholar 

  170. van Antwerpen R, Chen GC, Pullinger CR, Kane JP, Labelle M, Krauss RM, et al. Cryo-electron microscopy of low density lipoprotein and reconstituted discoidal high density lipoprotein: imaging of the apolipoprotein moiety. J Lipid Res. 1997;38:659–69.

    PubMed  Google Scholar 

  171. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417:750–4.

    CAS  PubMed  Google Scholar 

  172. Gazi I, Lourida ES, Filippatos T, Tsimihodimos V, Elisaf M, Tselepis AD. Lipoprotein-associated phospholipase A2 activity is a marker of small, dense LDL particles in human plasma. Clin Chem. 2005;51:2264–73.

    CAS  PubMed  Google Scholar 

  173. Gaubatz JW, Gillard BK, Massey JB, Hoogeveen RC, Huang M, Lloyd EE, et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A(2). J Lipid Res. 2007;48:348–57.

    CAS  PubMed  Google Scholar 

  174. Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff Jr DC, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2007;192:211–7.

    CAS  PubMed  Google Scholar 

  175. Cromwell WC, Otvos JD, Keyes MJ, Pencina MJ, Sullivan L, Vasan RS, et al. LDL particle number and risk of future cardiovascular disease in the Framingham offspring study—implications for LDL management. J Clin Lipidol. 2007;1:583–92.

    PubMed Central  PubMed  Google Scholar 

  176. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff Jr DC. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J Clin Lipidol. 2011;5:105–13.

    PubMed Central  PubMed  Google Scholar 

  177. Cromwell WC, Otvos JD. Heterogeneity of low-density lipoprotein particle number in patients with type 2 diabetes mellitus and low-density lipoprotein cholesterol <100 mg/dl. Am J Cardiol. 2006;98:1599–602.

    CAS  PubMed  Google Scholar 

  178. Sniderman AD, Williams K, McQueen MJ, Furberg CD. When is equal not equal? J Clin Lipidol. 2010;4:83–8.

    PubMed  Google Scholar 

  179. Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PW, et al. Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation. 2006;113(1):20–9.

    CAS  PubMed  Google Scholar 

  180. Brown RJ, Rader DJ. When HDL gets fat. Circ Res. 2008;103:131–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. McGillicuddy FC, Muredach MP, Rader DF. Adipose tissue modulation of high-density lipoprotein cholesterol. Implications for obesity, high-density lipoprotein metabolism, and cardiovascular disease. Circulation. 2011;124:1602–5.

    PubMed  Google Scholar 

  182. Jaye M, Krawiec J. Endothelial lipase and HDL metabolism. Curr Opin Lipidol. 2004;15:183–9.

    CAS  PubMed  Google Scholar 

  183. Moestrup SK, Nielsen LB. The role of the kidney in lipid metabolism. Curr Opin Lipidol. 2005;16:301–6.

    CAS  PubMed  Google Scholar 

  184. Moestrup SK, Kozyraki R. Cubilin, a high-density lipoprotein receptor. Curr Opin Lipidol. 2000;11:133–40.

    CAS  PubMed  Google Scholar 

  185. Barrans A, Collet X, Barbaras R, Jaspard B, Manent J, Vieu C, et al. Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem. 1994;269:11572–7.

    CAS  PubMed  Google Scholar 

  186. Asztalos BF, Collins D, Cupples LA, Demissie S, Horvath KV, Bloomfield HE, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2005;25:2185–91.

    CAS  PubMed  Google Scholar 

  187. Lamon-Fava S, Herrington DM, Reboussin DM, Sherman M, Horvath KV, Cupples LA, et al. Plasma levels of HDL subpopulations and remnant lipoproteins predict the extent of angiographically-defined coronary artery disease in postmenopausal women. Arterioscler Thromb Vasc Biol. 2008;28:575–9.

    CAS  PubMed  Google Scholar 

  188. Söderlund S, Soro-Paavonen A, Ehnholm C, Jauhiainen M, Taskinen MR. Hypertriglyceridemia is associated with prebeta-HDL concentrations in subjects with familial low HDL. J Lipid Res. 2005;46:1643–51.

    PubMed  Google Scholar 

  189. Jonkers IJ, Smelt AH, Hattori H, Scheek LM, van Gent T, de Man FH, et al. Decreased PLTP mass but elevated PLTP activity linked to insulin resistance in HTG: effects of bezafibrate therapy. J Lipid Res. 2003;44:1462–9.

    CAS  PubMed  Google Scholar 

  190. Lee M, Kim JQ, Kim J, Oh H, Park M. Studies on the plasma lipid profiles, and LCAT and CETP activities according to hyperlipoproteinemia phenotypes (HLP). Atherosclerosis. 2001;159:381–9.

    CAS  PubMed  Google Scholar 

  191. Sorrentino SA, Besler C, Rohrer L, Meyer M, Heinrich K, Bahlmann FH, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. 2010;121:110–22.

    CAS  PubMed  Google Scholar 

  192. McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, et al. INTERHEART study investigators. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case–control study. Lancet. 2008;372:224–33.

    CAS  PubMed  Google Scholar 

  193. Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113:1556–63.

    CAS  PubMed  Google Scholar 

  194. Blake GJ, Otvos JD, Rifai N, Ridker PM. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106:1930–7.

    CAS  PubMed  Google Scholar 

  195. Gasevic D, Frohlich J, Mancini GB, Lear SA. The association between triglyceride to high-density-lipoprotein cholesterol ratio and insulin resistance in a multiethnic primary prevention cohort. Metabolism. 2011.

    Google Scholar 

  196. Hanak V, Munoz J, Teague J, Stanley Jr A, Bittner V. Accuracy of the triglyceride to high-density lipoprotein cholesterol ratio for prediction of the low-density lipoprotein phenotype B. Am J Cardiol. 2004;94:219–22.

    CAS  PubMed  Google Scholar 

  197. Bittner V, Johnson BD, Zineh I, Rogers WJ, Vido D, Marroquin OC, et al. The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: a report from the Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2009;157:548–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Carey VJ, Bishop L, Laranjo N, Harshfield BJ, Kwiat C, Sacks FM. Contribution of high plasma triglycerides and low high-density lipoprotein cholesterol to residual risk of coronary heart disease after establishment of low-density lipoprotein cholesterol control. Am J Cardiol. 2010;106:757–63.

    CAS  PubMed  Google Scholar 

  199. Cordero A, Andrés E, Ordoñez B, León M, Laclaustra M, Grima A, et al. Usefulness of triglycerides-to-high-density lipoprotein cholesterol ratio for predicting the first coronary event in men. Am J Cardiol. 2009;104:1393–7.

    Google Scholar 

  200. Zoppini G, Negri C, Stoico V, Casati S, Pichiri I, Bonora E. Triglyceride-high-density lipoprotein cholesterol is associated with microvascular complications in type 2 diabetes mellitus. Metabolism. 2012;61:22–9.

    CAS  PubMed  Google Scholar 

  201. Di Bonito P, Moio N, Scilla C, Cavuto L, Sibilio G, Sanguigno E, et al. Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children. Diabetes Care. 2012;35:158–62.

    PubMed  Google Scholar 

  202. Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, et al. Type 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One. 2011;6:e22142.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Passarelli M, Tang C, McDonald TO, O’Brien KD, Gerrity RG, Heinecke JW, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005;54:2198–205.

    CAS  PubMed  Google Scholar 

  204. Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes. 2010;59:1153–60.

    CAS  PubMed  Google Scholar 

  205. Koo SH, Dutcher AK, Towle HC. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J Biol Chem. 2001;276:9437–45.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Dayspring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dayspring, T.D. (2014). Apoproteins and Cell Surface Receptors Regulating Lipoprotein Metabolism in the Setting of Type 2 Diabetes. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics