Skip to main content

Roles of Extravasated and Modified Plasma Lipoproteins in Diabetic Retinopathy

  • Chapter
  • First Online:
  • 1708 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Diabetic retinopathy (DR) is generally viewed as a consequence of hyperglycemia, but to a large extent, it may be driven by effects of plasma lipoproteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grassi G. Diabetic retinopathy. Minerva Med. 2003;94(6):419–35.

    CAS  PubMed  Google Scholar 

  2. Gardner TW, Antonetti DA. A prize catch for diabetic retinopathy. Nat Med. 2007;13(2):131–2.

    Article  CAS  PubMed  Google Scholar 

  3. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603.

    PubMed Central  PubMed  Google Scholar 

  4. Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 1987;36(7):808–12.

    Article  CAS  PubMed  Google Scholar 

  5. Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes. 1989;38(10):1203–6.

    Article  CAS  PubMed  Google Scholar 

  6. Alm A. Ocular circulation. In: Hart WM, editor. Adler’s physiology of the eye. St. Louis, MO: Mosby-year book; 1992. p. 198–227.

    Google Scholar 

  7. Garner A. Histopathology of diabetic retinopathy in man. Eye (Lond). 1993;7(Pt 2):250–3.

    Article  Google Scholar 

  8. Hammes HP. Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res. 2005;37 Suppl 1:39–43.

    Article  PubMed  Google Scholar 

  9. Hammes HP, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51(10):3107–12.

    Article  CAS  PubMed  Google Scholar 

  10. Kingsley LA, et al. An epidemiologic approach to the study of retinopathy: the Pittsburgh diabetic morbidity and retinopathy studies. Diabetes Res Clin Pract. 1988;4(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  11. Lobo CL, Bernardes RC, Cunha-Vaz JG. Alterations of the blood-retinal barrier and retinal thickness in preclinical retinopathy in subjects with type 2 diabetes. Arch Ophthalmol. 2000;118(10):1364–9.

    Article  CAS  PubMed  Google Scholar 

  12. Qaum T, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.

    CAS  PubMed  Google Scholar 

  13. Dornan TL, et al. Low density lipoprotein cholesterol: an association with the severity of diabetic retinopathy. Diabetologia. 1982;22(3):167–70.

    Article  CAS  PubMed  Google Scholar 

  14. Keiding NR, et al. Serum lipoproteins and cholesterol levels in normal subjects and in young patients with diabetes in relation to vascular complications. Diabetes. 1952;1(6):434–40.

    CAS  PubMed  Google Scholar 

  15. Lowy Jr AD, Barach JH. A study of serum lipoprotein and cholesterol determinations in 901 diabetics. Diabetes. 1957;6(4):342–53.

    PubMed  Google Scholar 

  16. Bhan CK, Kumar V, Ahuja MM. Studies on neutral fat, lipoproteins and lipoprotein lipase in relation to vascular disease in young Indian diabetics. Acta Diabetol Lat. 1971;8(4):638–48.

    Article  CAS  PubMed  Google Scholar 

  17. Kissebah AH, et al. Plasma-lipids and glucose/insulin relationship in non-insulin-requiring diabetics with and without retinopathy. Lancet. 1975;1(7916):1104–8.

    Article  CAS  PubMed  Google Scholar 

  18. Eckel RH, et al. Plasma lipids and microangiopathy in insulin-dependent diabetes mellitus. Diabetes Care. 1981;4(4):447–53.

    Article  CAS  PubMed  Google Scholar 

  19. Dornan TL, et al. Genetic susceptibility to the development of retinopathy in insulin-dependent diabetics. Diabetes. 1982;31(3):226–31.

    Article  CAS  PubMed  Google Scholar 

  20. Mohan R, et al. Increased LDL cholesterol in non-insulin-dependent diabetics with maculopathy. Acta Diabetol Lat. 1984;21(1):85–9.

    CAS  PubMed  Google Scholar 

  21. Chakraborty A, et al. Serum lipids and lipoproteins in diabetic retinopathy. J Assoc Physicians India. 1986;34(9):631–2.

    CAS  PubMed  Google Scholar 

  22. Miccoli R, et al. Circulating lipid levels and severity of diabetic retinopathy in type I diabetes mellitus. Ophthalmic Res. 1987;19(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kostraba JN, et al. The epidemiology of diabetes complications study. IV. Correlates of diabetic background and proliferative retinopathy. Am J Epidemiol. 1991;133(4):381–91.

    CAS  PubMed  Google Scholar 

  24. Sinav S, et al. Plasma lipids and lipoproteins in retinopathy of type I (insulin-dependent) diabetic patients. Ann Ophthalmol. 1993;25(2):64–6.

    CAS  PubMed  Google Scholar 

  25. West KM, Erdreich LJ, Stober JA. A detailed study of risk factors for retinopathy and nephropathy in diabetes. Diabetes. 1980;29(7):501–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nathan DM, et al. Retinopathy in older type II diabetics. Association with glucose control. Diabetes. 1986;35(7):797–801.

    Article  CAS  PubMed  Google Scholar 

  27. Agardh CD, et al. Plasma lipids and plasma lipoproteins in diabetics with and without proliferative retinopathy. Acta Med Scand. 1988;223(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dhir SP, et al. Serum lipoprotein cholesterol profile in diabetic retinopathy. Indian J Ophthalmol. 1984;32(2):89–91.

    CAS  PubMed  Google Scholar 

  29. Van Eck WF. The effect of a low fat diet on the serum lipids in diabetes and its significance in diabetic retinopathy. Am J Med. 1959;27:196–211.

    Article  Google Scholar 

  30. King RC, Dobree JH. Corn oil in the treatment of exudative diabetic retinopathy. Proc R Soc Med. 1963;56:759–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ernest I, Linner E, Svanborg A. Carbohydrate-rich, fat-poor diet in diabetes. Am J Med. 1965;39(4):594–600.

    Article  CAS  PubMed  Google Scholar 

  32. Cullen JF, Ireland JT, Oliver MF. A controlled trial of atromid therapy in exudative diabetic retinopathy. Trans Ophthalmol Soc U K. 1964;84:281–95.

    CAS  PubMed  Google Scholar 

  33. Duncan LJ, et al. A three-year trial of atromid therapy in exudative diabetic retinopathy. Diabetes. 1968;17(7):458–67.

    CAS  PubMed  Google Scholar 

  34. Houtsmuller AJ. Treatment of exudative diabetic retinopathy with atromid-S. Ophthalmologica. 1968;156(1):2–5.

    Article  CAS  PubMed  Google Scholar 

  35. Vannas S, Esila R, Tuovinen E. Observations on the effect of ethyl a-p chlorophenoxyisobutyrate (CPIB) therapy on serum lipid levels and on diabetic and some other retinopathies. Acta Ophthalmol (Copenh). 1968;46(2):162–70.

    Article  CAS  Google Scholar 

  36. Harrold BP, Marmion VJ, Gough KR. A double-blind controlled trial of clofibrate in the treatment of diabetic retinopathy. Diabetes. 1969;18(5):285–91.

    CAS  PubMed  Google Scholar 

  37. Gordon B, et al. The effects of lipid lowering on diabetic retinopathy. Am J Ophthalmol. 1991;112(4):385–91.

    CAS  PubMed  Google Scholar 

  38. Janknecht P, Schumann M, Hansen LL. Reduction of retinal exudates in diabetic retinopathy after heparin-induced extracorporeal LDL-precipitation (HELP). A case report. Eur J Ophthalmol. 1996;6(3):340–2.

    CAS  PubMed  Google Scholar 

  39. van Leiden HA, et al. Blood pressure, lipids, and obesity are associated with retinopathy: the hoorn study. Diabetes Care. 2002;25(8):1320–5.

    Article  PubMed  Google Scholar 

  40. Lloyd CE, et al. The progression of retinopathy over 2 years: the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J Diabetes Complications. 1995;9(3):140–8.

    Google Scholar 

  41. Lyons TJ, et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci. 2004;45(3):910–8.

    Google Scholar 

  42. Fong DS, et al. Retinopathy in diabetes. Diabetes Care. 2004;27 Suppl 1:S84–7.

    Article  PubMed  Google Scholar 

  43. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  44. Jialal I, Devaraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem. 1996;42(4):498–506.

    CAS  PubMed  Google Scholar 

  45. Mora S, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2007;192(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lyons TJ, et al. Glycosylation of low density lipoprotein in patients with type 1 (insulin-dependent) diabetes: correlations with other parameters of glycaemic control. Diabetologia. 1986;29(10):685–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chew EY, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Article  PubMed  Google Scholar 

  48. Keech AC, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    Article  CAS  PubMed  Google Scholar 

  49. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98 5 Suppl:823–33.

    Google Scholar 

  50. Cheung N, et al. Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2007;30(7):1742–6.

    Article  PubMed  Google Scholar 

  51. Sasongko MB, et al. Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care. 2011;34(2):474–9.

    Article  CAS  PubMed  Google Scholar 

  52. Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis. 2009;202(2):321–9.

    Article  CAS  PubMed  Google Scholar 

  53. Forrest KY, et al. Are predictors of coronary heart disease and lower-extremity arterial disease in type 1 diabetes the same? A prospective study. Atherosclerosis. 2000;148(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  54. Luc G, et al. Lipoprotein (a) as a predictor of coronary heart disease: the PRIME Study. Atherosclerosis. 2002;163(2):377–84.

    Article  CAS  PubMed  Google Scholar 

  55. Meisinger C, et al. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005;112(5):651–7.

    Article  CAS  PubMed  Google Scholar 

  56. Stephens JW, et al. Increased plasma markers of oxidative stress are associated with coronary heart disease in males with diabetes mellitus and with 10-year risk in a prospective sample of males. Clin Chem. 2006;52(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  57. Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study. Br J Ophthalmol. 2003;87(7):899–901.

    Article  CAS  PubMed  Google Scholar 

  58. Lyons TJ, et al. Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes. 1994;43(9):1090–5.

    Article  CAS  PubMed  Google Scholar 

  59. Barth JL, et al. Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia. 2007;50(10):2200–8.

    Article  CAS  PubMed  Google Scholar 

  60. Diffley M, Wu M, Sohn M, Song W, Hammad SM, Lyons TJ. Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Mol Vis. 2009;15:135–45.

    CAS  PubMed  Google Scholar 

  61. Wu M, et al. Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49(6):2679–85.

    Article  PubMed  Google Scholar 

  62. Nishi K, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22(10):1649–54.

    Article  CAS  PubMed  Google Scholar 

  63. Smith EB, Staples EM. Plasma protein concentrations in interstitial fluid from human aortas. Proc R Soc Lond B Biol Sci. 1982;217(1206):59–75.

    Article  CAS  PubMed  Google Scholar 

  64. Zou MH, et al. Tyrosine nitration of prostacyclin synthase is associated with enhanced retinal cell apoptosis in diabetes. Am J Pathol. 2011;179(6):2835–44.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang SX, et al. Pigment epithelium-derived factor mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized low-density lipoprotein. J Mol Endocrinol. 2008;41(3):135–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wu M, Lyons TJ. Treatment approaches for diabetes and dyslipidemia. Horm Res Paediatr. 2011;76 Suppl 1:76–80.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol. 2009;175(6):2676–85.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou T, et al. The role of lipid peroxidation products and oxidative stress in activation of the canonical wingless-type MMTV integration site (WNT) pathway in a rat model of diabetic retinopathy. Diabetologia. 2011;54(2):459–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol. 2009;44(10):625–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Song W, et al. Effects of oxidized and glycated LDL on gene expression in human retinal capillary pericytes. Invest Ophthalmol Vis Sci. 2005;46(8):2974–82.

    Article  PubMed  Google Scholar 

  71. Hammes HP, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA. 1991;88(24):11555–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes. 2001;50(7):1636–42.

    Article  CAS  PubMed  Google Scholar 

  73. Hammes HP, et al. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia. 1994;37(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  74. Gardiner TA, Anderson HR, Stitt AW. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol. 2003;201(2):328–33.

    Article  CAS  PubMed  Google Scholar 

  75. Lyons TJ, et al. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Invest Ophthalmol Vis Sci. 2000;41(5):1176–80.

    CAS  PubMed  Google Scholar 

  76. Yu Y, et al. Effects of D- and L-glucose and mannitol on retinal capillary cells: inhibition by nanomolar aminoguanidine. Am J Pharmacol Toxicol. 2007;2(4):148–58.

    Article  Google Scholar 

  77. Bolton WK, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  78. Boehm BO, et al. Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia. 2003;46(3):394–400.

    CAS  PubMed  Google Scholar 

  79. Ogata N, et al. Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol. 2002;134(3):348–53.

    Article  CAS  PubMed  Google Scholar 

  80. Ogata N, et al. Pigment epithelium-derived factor in the vitreous is low in diabetic retinopathy and high in rhegmatogenous retinal detachment. Am J Ophthalmol. 2001;132(3):378–82.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang SX, et al. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol. 2006;37(1):1–12.

    Article  PubMed  Google Scholar 

  82. Lopes-Virella MF, et al. Oxidized LDL immune complexes and coronary artery calcification in type 1 diabetes. Atherosclerosis. 2011;214(2):462–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lopes-Virella MF, et al. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes. 2011;60(2):582–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chen Y, et al. Very low density lipoprotein receptor, a negative regulator of the wnt signaling pathway and choroidal neovascularization. J Biol Chem. 2007;282(47):34420–8.

    Article  CAS  PubMed  Google Scholar 

  85. Li J, et al. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583(9):1521–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Li J, Wang JJ, Zhang SX. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. J Biol Chem. 2011;286(6):4912–21.

    Article  CAS  PubMed  Google Scholar 

  87. Zhong Y, Wang JJ, Zhang SX. Intermittent but not constant high glucose induces ER stress and inflammation in human retinal pericytes. Adv Exp Med Biol. 2012;723:285–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Lyons M.D., F.R.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, M., Lyons, T.J. (2014). Roles of Extravasated and Modified Plasma Lipoproteins in Diabetic Retinopathy. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics