Skip to main content

Animal Models of General Cognitive Ability for Genetic Research into Cognitive Functioning

  • Chapter
  • First Online:
Book cover Behavior Genetics of Cognition Across the Lifespan

Abstract

Species-level research on animal behavior is decades old and very well described, but individual differences in cognition has only gained momentum much more recently. Although there have been some studies of individual differences in cognition in primates, the new research has mainly focused on general cognitive ability (g) in mice. Fortunately, the timing is right for combining our understanding of the genetics and neuroscience of intelligence in humans with genetic manipulation models of learning and memory in mice. This will help forge deeper understanding of human intelligence and mental cognitive disorders such as retardation and Alzheimer Disease. In this chapter, we survey the academic literature associated with g in animals, with discussions of links with genetics, cross-species comparisons and neuroscience. We then focus on mice to describe the rapidly-growing genetic manipulation models of learning, memory and cognitive dysfunction. Ultimately, we believe that cognitive test batteries for mice, in combination with exploring the structure of cognition from the individual differences perspective, creates a useful framework for describing the effects of cognition-related genes and extrapolating these up to the human brain and experience.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allman, J., Hakeem, A., & Watson, K. (2002). Two phylogenetic specializations in the human brain. The Neuroscientist, 8, 335–346.

    PubMed  Google Scholar 

  • Allman, J. M., Watson, K. K., Tetreault, N. A., & Hakeem, A. Y. (2005). Intuition and autism: A possible role for Von Economo neurons. Trends in Cognitive Sciences, 9, 367–373.

    PubMed  Google Scholar 

  • Anastasi, A., Fuller, J. L., Scott, J. P., & Schmitt, J. R. (1955). A factor analysis of the performance of dogs on certain learning tests. Zoologica, 40(3), 33–46.

    Google Scholar 

  • Anderson, B. (1993). Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: Intelligence? Neuroscience Letters, 153, 98–102.

    PubMed  Google Scholar 

  • Bagg, H. J. (1920). Individual differences and family resemblances in animal behavior. Archives of Psychology, 43, 1–58.

    Google Scholar 

  • Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., Frey, J. U., & Lipp, H. P. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? The Journal of Neuroscience, 23, 6304–6314.

    PubMed  Google Scholar 

  • Banerjee, K., Chabris, C. F., Johnson, V. E., Lee, J. J., Tsao, F., & Hauser, M. D. (2009). General intelligence in another primate: Individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). (P. F. Ferrari, Ed.) PLoS ONE, 4(6): e5883. doi:10.1371/journal.pone.0005883.

    Google Scholar 

  • Berger, S., Wolfer, D. P., Selbach, O., Alter, H., Erdmann, G., et al. (2006). Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 195–200.

    Google Scholar 

  • Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45, 675–688.

    PubMed  Google Scholar 

  • Bons, N., Rieger, F., Prudhomme D, Fisher, A., & Krause, K.-H. (2006). Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer’s disease? Genes, Brain Behav, 5, 120–130.

    Google Scholar 

  • Bontekoe, C. J., Bakker, C. E., Nieuwenhuizen, I. M., van der Linde, H., Lans, H., de Lange, D., Hirst, M. C., & Oostra, B. A. (2001). Instability of a (CGG)98 repeat in the Fmr1 promotor. Human Molecular Genetics, 10, 1693–1699.

    PubMed  Google Scholar 

  • Bornstein, M., & Sigman, M. (1986). Continuity in mental development from infancy. Child Development, 57, 251–274.

    PubMed  Google Scholar 

  • Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., et al. (1997). A role for the ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281–286.

    PubMed  Google Scholar 

  • Braunmuhl, A. V. (1956). Kongophile angiopathie und senile plaques bei greisen hunden. Archiv für Psychiatrie und Nervenkrankheiten, 194, 395–414.

    Google Scholar 

  • Brooks, S. P., Pask, T., Jones, L., & Dunnett, S. B. (2005). Behavioral profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes, Brain and Behavior, 4, 307–17.

    Google Scholar 

  • Buhot, M.-C., Wolff, M., Benhassine, N., Costet, P., Hen, R., & Segu, L. (2003). Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learning & Memory, 10, 466–477.

    Google Scholar 

  • Bush, E. C., & Allman, J. M. (2003). The scaling of white matter to grey matter in cerebellum and neocortex. Brain, Behavior, and Evolution, 61, 1–5.

    Google Scholar 

  • Bush, E. C., & Allman, J. M. (2004). The scaling of frontal cortex in primates and carnivores. Proceedings of the National Academy of Sciences, 101, 3962–3966.

    Google Scholar 

  • Campbell, A. A. (1935). Community of function in performance of rats on alley mazes and Maier reasoning apparatus. Journal of Comparative and Physiological Psychology, 31, 225–235.

    Google Scholar 

  • Carlezon, W. A. Jr., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.

    PubMed  Google Scholar 

  • Chabris, C. F. (2007). Cognitive and neurobiological mechanisms of the Law of General Intelligence. In M. J. Roberts (Ed.), Integrating the mind. Hove: Psychology Press.

    Google Scholar 

  • Chandra S. B., Hosler, J. S., & Smith, B. H. (2000). Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). Journal of Comparative Psychology, 114, 86–97.

    PubMed  Google Scholar 

  • Commins, W. D., McNemar, Q., & Stone, C. P. (1932). Intercorrelations of measures of ability in the rat. Journal of Comparative Psychology, 1(14), 225–235. doi:10.1037/h0073524

    Google Scholar 

  • Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372, 237–243.

    PubMed  Google Scholar 

  • Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547–552.

    PubMed  Google Scholar 

  • Cork, L. C., Powers, R. E., Selkoe, D. J., Davies P., Geyer, J. J., & Price, D. L. (1988). Neurofibrillary tangles and senile plaques in aged bears. Journal of Neuropathology and Experimental Neurology, 47(1988), 629–641.

    PubMed  Google Scholar 

  • Costa, R. M., & Silva, A. J. (2003). Mouse models of neurofibromatosis type I: bridging the GAP. Trends in Molecular Medicine, 9, 19–23.

    PubMed  Google Scholar 

  • Crabbe, J. C., Wahlsten, D., Dudek, B. C. (1999). Genetics of mouse behavior: interactions with laboratory environment. Science, 284(5420), 1670–1672.

    PubMed  Google Scholar 

  • Crawley, J. N. (2008). Behavioral phenotyping strategies for mutant mice. Neuron, 57(6), 809–818.

    PubMed  Google Scholar 

  • Crestani, F., Keist, R., Fritschy, J. M., Benke, D., Vogt, K., Prut, L., Bluthmann, H., Mohler, H., & Rudolph, U. (2002). Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 8980–8985.

    Google Scholar 

  • Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17, 2409–2417.

    PubMed  Google Scholar 

  • Cui, Z., Lindl, K. A., Mei, B., Zhang, S., & Tsien, J. Z. (2005). Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. European Journal of Neuroscience, 22, 755–763.

    PubMed  Google Scholar 

  • D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.

    PubMed  Google Scholar 

  • Devoy, A., Bunton-Stasyshyn, R. K. A., Tybulewicz V. L. J., Smith, A. J. H., & Fisher, E. M. C. (2012). Genomically humanized mice: technologies and promises. Nature Reviews Genetics, 13, 14–20.

    Google Scholar 

  • Drago, J., McColl, C. D., Horne, M. K., Finkelstein, D. I., & Ross, S. A. (2003). Neuronal nicotinic receptors: Insights gained from gene knockout and knockin mutant mice. Cellular and Molecular Life Sciences, 60, 1267–1280.

    PubMed  Google Scholar 

  • Dunlap, J. W. (1933). The organization of learning and other traits in chickens. Johns Hopkins Press.

    Google Scholar 

  • Elgersma, Y., Sweatt, J. D., & Giese, K. P. (2004). Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. The Journal of Neurosciences, 24, 8410–8415.

    Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., Monaco, A. P., Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–72.

    PubMed  Google Scholar 

  • Ferguson, H. J., Cobey, S., & Smith, B. H. (2001). Sensitivity to a change in reward is heritable in the honeybee, apis mellifera. Animal Behaviour, 61, 527–534.

    Google Scholar 

  • Fratiglioni, L., Small, B. J., Winblad, B., & Bäckman, L. (2001). The Transition from Normal Functioning to Dementia in the Aging Population. In K. Iqbal, S. Sisodia, & B. Winblad (Eds.), Alzheimer’s disease: Advances in etiology, pathogenesis and therapeutics (pp. 3-10). Chichester: Wiley

    Google Scholar 

  • Galsworthy, M. J., Paya-Cano, J. L., Monleón, S., & Plomin, R. (2002). Evidence for general cognitive ability (g) in heterogeneous stock (HS) mice and an analysis of potential confounds. Genes, Brainand Behavior, 1, 88–95.

    Google Scholar 

  • Galsworthy, M. J., Paya-Cano, J. L., Liu, L., Monleón, S., Gregoryan, G., Fernandes, C., Schalkwyk, L. C., & Plomin, R. (2005). Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behavior Genetics, 35, 675–692.

    PubMed  Google Scholar 

  • Galsworthy, M. J., Madani, R., & Lipp, H.-P. (2012). Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis. Available from Nature Precedings: <http://dx.doi.org/10.1038/npre.2012.6981.1>.

  • Gama Sosa, M. A., De Gasperi, R., Elder, G. A. (2010). Animal transgenesis: an overview. Brain Structure and Function, 214(2–3), 91–109.

    Google Scholar 

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Borthelette, P., Blackwell, C., et al. (1995). Alzheimer‐type neuropathology in transgenic mice overexpressing V717F β amyloid precursor protein. Nature, 373, 523–527; doi:10.1038/373523a0

    Google Scholar 

  • Gerlai, R., McNamara, A., Choi-Lundberg, D. L., Armanini, M., Ross, J., Powell-Braxton, L., & Phillips, H. S. (2001). Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. European Journal of Neuroscience, 14, 1153–63.

    PubMed  Google Scholar 

  • Giaccone, G., Verga, L., Finazzi, M., Pollo, B., Tagliavini, F., Frangione, B., & Bugiani, O. (1990). Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neuroscience Letters, 114, 178–183.

    PubMed  Google Scholar 

  • Giese, K. P., Friedman, E., Telliez, J. B., Fedorov, N. B., Wines, M., Feig, L. A., & Silva, A. J. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 41, 791–800.

    PubMed  Google Scholar 

  • Gignac, G., Vernon, P. A., & Wickett, J. C. (2003). Factors influencing the relationship between brain size and intelligence. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 93–106). Amsterdam: Pergamon.

    Google Scholar 

  • Gotz J., & Ittner, L. M. (2008). Animal models of Alzheimer’s disease and frontotemporal dementia. Nature Rev Neurosci, 9, 532–544.

    Google Scholar 

  • Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., & Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258, 1903–10.

    PubMed  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    PubMed  Google Scholar 

  • Herndon, J. G., Moss, M. B., Rosene, D. L., & Killiany, R. J. (1997). Patterns of cognitive decline in aged rhesus monkeys. Behavioural brain research, 87(1), 25–34.

    Google Scholar 

  • Herrmann, E., & Call, J. (2012). Are there geniuses among the apes? Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2753–2761.

    Google Scholar 

  • Hölscher, C., Schmid, S., Pilz, P. K. D., Sansig, G., van der Putten, H., & Plappert, C. F. (2004). Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behavioural Brain Research, 154, 473–481.

    PubMed  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. S., & Cole, G. (1996). Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.

    PubMed  Google Scholar 

  • Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835–881.

    PubMed  Google Scholar 

  • Jin, P., & Warren, S. T. (2003). New insights into fragile X syndrome: from molecules to neurobehaviors. Trends in Biochemical Sciences, 28, 152–158.

    PubMed  Google Scholar 

  • Katsnelson, E., Motro, U., Feldman, M. W., & Lotem, A. (2011). Individual-learning ability predicts social-foraging strategy in house sparrows. Proceedings of the Royal Society B, 278, 582–589.

    Google Scholar 

  • Kaufman, S.B., DeYoung, C.G., Gray, J.R., Jimenez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321–340

    Google Scholar 

  • Keagy, J., Savard, J. F., & Borgia, G. (2009). Male satin bowerbird problem-solving ability predicts mating success. Animal Behaviour, 78, 809–817.

    Google Scholar 

  • Keagy, J., Savard, J.-F., & Borgia, G. (2011). Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Animal Behaviour, 81(5), 1063–1070. doi:10.1016/j.anbehav.2011.02.018

    Google Scholar 

  • Kobayashi, K., & Kobayashi, T. (2001). Genetic evidence for noradrenergic control of long-term memory consolidation. Brain and Development, 23, S16–S23.

    Google Scholar 

  • Kolata, S., Light, K., Townsend, D. A., Hale, G., Grossman, H., Matzel, L. D. (2005). Variations in working memory capacity predict individual differences in general learning abilities among genetically diverse mice. Neurobio Learn Mem, 84, 242–246.

    Google Scholar 

  • Kolata, S., Light, K., Wass, C. D., Colas-Zelin, D., Roy, D., Matzel, L. D. (2010). A dopaminergic gene cluster in the prefrontal cortex predicts performance indicative of general intelligence in genetically heterogeneous mice. PLoS One, 5, e14036.

    PubMed  Google Scholar 

  • Kooy, R. F. (2003). Of mice and the fragile X syndrome. Trends in Genetics, 19, 148–154.

    PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389–433.

    Google Scholar 

  • Law, J. W. S., Lee, A. Y. W., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., Schachner, M., & Morellini, F. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. The Journal of Neuroscience, 23, 10419–10432.

    PubMed  Google Scholar 

  • Lee, V. M., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.

    PubMed  Google Scholar 

  • Lehrer, J. (2009). Small, furry … and smart. Nature, 461, 862–864.

    PubMed  Google Scholar 

  • Li, G., Cheng, H., Zhang, X., Shang, X., Xie, H., Zhang, X., Yu, J., & Han, J. (2012). Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice. Neurological Sciences, 1–7 [Epub ahead of print] PubMed PMID: 22872064.

    Google Scholar 

  • Liggett, J. R. (1925). A note of the reliability of the chick’s performance in two simple mazes. The Pedagogical Seminary and Journal of Genetic Psychology, 32(3), 470–480.

    Google Scholar 

  • Linnarsson, S., Bjorklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. European Journal of Neuroscience, 9, 2581–7.

    PubMed  Google Scholar 

  • Livesey, P. J. (1970). A consideration of the neural basis of intelligent behavior: Comparative studies. Behavioral Science, 15, 164–170.

    PubMed  Google Scholar 

  • Locurto, C., & Scanlon, C., (1998). Individual differences and a spatial learning factor in two strains of mice (Mus musculus). Journal of Comparative Psychology, 112(4), 344–352.

    Google Scholar 

  • Locurto, C., Fortin, E., & Sullivan, R. (2003). The structure of individual differences in Heterogeneous Stock mice across problem types and motivational systems. Genes, Brainand Behavior, 2, 40–55.

    Google Scholar 

  • Locurto, C., Benoit, A., Crowley, C., & Miele, A. (2006). The structure of individual differences in batteries of rapid acquisition tasks in mice. Journal of Comparative Psychology, 120, 378–388.

    Google Scholar 

  • Lu, Y.-M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M., & Roder, J. C. (1997). Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. The Journal of Neuroscience, 17, 5196–5205.

    PubMed  Google Scholar 

  • Masugi, M., Yokoi, M., Shigemoto, R., Muguruma, K., Watanabe, Y., Sansig, G., van der Putten, H., & Nakanishi, S. (1999). Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. The Journal of Neuroscience, 19, 955–963.

    PubMed  Google Scholar 

  • Matsui, M., Yamada, S., Oki, T., Manabe, T., Taketo, M. M., & Ehlert, F. J. (2004). Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sciences, 75, 2971–2981.

    PubMed  Google Scholar 

  • Matzel, L. D., & Gandhi, C. C. (2000). The tractable contribution of synapses and their component molecules to individual differences in learning. Behavioural Brain Research, 110, 53–66.

    PubMed  Google Scholar 

  • Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., Specht, S. M., et al. (2003). Individual differences in the expression of a general learning ability in mice. Journal of Neuroscience, 23(16), 6423–6433.

    PubMed  Google Scholar 

  • Matzel, L. D., Light, K. R., Wass, C., Colas-Zelin, D., Denman-Brice, A., Waddel, A. C., & Kolata, S. (2011). Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility. Learning & Memory, 18(5), 345–356.

    Google Scholar 

  • Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., et al. (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron, 34, 807–820.

    PubMed  Google Scholar 

  • McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337–346.

    Google Scholar 

  • Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–14.

    PubMed  Google Scholar 

  • Miyamoto, Y., Yamada, K., Noda, Y., Mori, H., Mishina, M., & Nabeshima, T. (2001). Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. The Journal of Neuroscience, 21, 750–757.

    PubMed  Google Scholar 

  • Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. Journal of Biological Chemistry, 274, 6483–6492.

    PubMed  Google Scholar 

  • Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: candidate genes in humans and animals. Behavior Genetics, 31, 511–531.

    PubMed  Google Scholar 

  • Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.

    PubMed  Google Scholar 

  • Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., et al. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. The Journal of Neuroscience, 20, 4050–4058.

    PubMed  Google Scholar 

  • Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E. et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485, 242–245.

    PubMed  Google Scholar 

  • Nelson P.T., Greenberg, S. G., & Saper, C. B. (1994). Neurofibrillary tangles in the cerebral cortex of sheep. Neuroscience Letters, 170, 187–190.

    PubMed  Google Scholar 

  • Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., & LaFerla, F. M. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24, 1063–1070.

    Google Scholar 

  • Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular abeta and synaptic dysfunction. Neuron, 39, 409–421.

    Google Scholar 

  • Oitzl, M. S., Reichardt, H. M., Joels, M., & de Kloet, E. R. (2000). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98, 12790–12795.

    Google Scholar 

  • Pallas, M., Camins, A., Smith, M. A., Perry, G., Lee, H. G., & Casadesus, G. (2008). From aging to alzheimer’s disease: Unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis, 15, 615–624.

    PubMed  Google Scholar 

  • Pittenger, C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., & Kandel, E. R. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampusdependent spatial memory. Neuron, 34, 447–462.

    PubMed  Google Scholar 

  • Plomin, R., & Galsworthy, M. J. (2003). Intelligence and cognition. In Cooper DN (ed.), Nature encyclopedia of the human genome (Vol. 3, pp. 508–514). London: Nature Publishing Group.

    Google Scholar 

  • Plomin, R., & Kosslyn, S. M. (2001). Genes, brain and cognition. Nature Neuroscience, 4, 1153–1154.

    PubMed  Google Scholar 

  • Plomin, R., DeFries JC, McClearn, G. E., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.

    Google Scholar 

  • Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2007). Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37(1), 31–50.

    PubMed  Google Scholar 

  • Powell, C. M. (2006). Gene targeting of presynaptic proteins in synaptic plasticity and memory: Across the great divide. Neurobiology of Learning and Memory, 85, 2–15.

    PubMed  Google Scholar 

  • Price, J. L., Davies, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.

    PubMed  Google Scholar 

  • Rajalakshmi, R., & Jeeves, M. A. (1968). Performance on Hebb-Williams maze as related to discrimination and reversal learning in rats. Animal Behaviour, 16(1)

    Google Scholar 

  • Robbins, T. W., & Murphy, E. R. (2006). Behavioral pharmacology: 40 + years of progress, with a focus on glutamate receptors and cognition. Trends in Pharmacological Sciences, 27, 141–148.

    PubMed  Google Scholar 

  • Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3, 238–244.

    PubMed  Google Scholar 

  • Reisel, D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M. J., Flint, J., Borchardt, T., Seeburg, P. H., & Rawlins, N. P. (2002). Spatial memory dissociations in mice lacking GluR1. Nature Neuroscience, 5, 868–873.

    PubMed  Google Scholar 

  • Richter S. H., Garner, J. P., & Würbel, H. (2009). Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nature Methods, 6, 257–261.

    PubMed  Google Scholar 

  • Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140, 1–47.

    PubMed  Google Scholar 

  • Rosenthal, N., & Brown, S. (2007). The mouse ascending: perspectives for human-disease models. Nature Cell Biology, 9, 993-999. doi:10.1038/ncb437

    Google Scholar 

  • Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250–257.

    PubMed  Google Scholar 

  • Sakagawa, T., Okuyama, S., Kawashima, N., Hozumi, S., Nakagawasai, O., Tadano, T., Kisara, K., Ichiki, T., & Inagami, T. (2000). Pain threshold, learning and ormation of brain edema in mice lacking the angiotensin II type 2 receptor. Life Sciences, 67, 2577–2585.

    PubMed  Google Scholar 

  • Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.

    Google Scholar 

  • Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2003). A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-a-deficient mice. The Journal of Neuroscience, 23, 3953–3959.

    PubMed  Google Scholar 

  • Schoenemann, P. T., Sheehan, M. J., & Glotzer, D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8, 242–252.

    PubMed  Google Scholar 

  • Schultz, C., Ghebremedhin, E., Sassin I, Braak, E., & Braak, H. (1999). Abnormally phosphorylated tau protein in neurons and glial cells of aged baboons. In K. Iqbal, D. F. Schwaabm, B. Winblad, & H. M. Wisniewski (Eds.) Alzheimer’s disease and related disorders (pp. 179–185). West Sussex: Wiley.

    Google Scholar 

  • Selcher, J. C., Nekrasova, T., Paylor, R., Landreth, G. E., & Sweatt, J. D. (2001). Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learning & Memory, 8, 11–19.

    Google Scholar 

  • Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., Armstrong, D. L., Paylor, R., & Zoghbi, H. Y. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.

    PubMed  Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 206–11.

    PubMed  Google Scholar 

  • Spearman, C. (1904). “General intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2), 201–292

    Google Scholar 

  • Spires-Jones T., & Knafo, S. (2012). Spines, plasticity, and cognition in Alzheimer’s model mice. Neural Plast. 2012:319836. Epub 2011 Nov 28.

    Google Scholar 

  • Stork, O., & Welzl, H. (1999). Memory formation and the regulation of gene expression. Cellular and Molecular Life Sciences, 55, 575–592.

    PubMed  Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., & Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    PubMed  Google Scholar 

  • Tang, Y. P., Wang, H., Feng, R., Kyin, M., & Tsien, J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 41, 779–790.

    PubMed  Google Scholar 

  • Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience, 5, 173–83.

    PubMed  Google Scholar 

  • Thompson, R. M., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence: A lesion survey of the rat brain. New York: Plenum.

    Google Scholar 

  • Thorndike, R. L. (1935). Organization of behavior in the albino rat. Genetic Psychology Monographs, 17, 1–70.

    Google Scholar 

  • Tomlin, M. I., & Stone, C. P. (1934). Intercorrelations of measures of learning ability in the albino rat. Journal of Comparative and Physiological Psychology, 17, 73–88.

    Google Scholar 

  • Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92, 163–175.

    PubMed  Google Scholar 

  • Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–1338.

    PubMed  Google Scholar 

  • Veltman J. A., & Brunner, H. G. (2012). De novo mutations in human genetic disease. Nature Reviews Genetics, 13, 565–575.

    PubMed  Google Scholar 

  • Warren, J. M. (1961). Individual differences in discrimination learning by cats. The Journal of Genetic Psychology, 1(98), 89–93.

    Google Scholar 

  • Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H. P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch & J. Flint (Eds.), R. Lydic & H. A. Baghdoyan (Series Eds.), Transgenic and knockout models of neuropsychiatric disorders (Contemporary clinical neuroscience) (pp. 101–125). Totowa: Humana Press.

    Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., Delon, M. R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 215, 1237–1239.

    PubMed  Google Scholar 

  • Witelson, S. F., Beresh, H., & Kigar, D. L. (2005). Intelligence and brain size in 100 postmortem brains: Sex, lateralization and age factors. Brain, 129, 386–398.

    PubMed  Google Scholar 

  • Woodruff-Pak, D. S. (2008). Animal Models of Alzheimer’s Disease: Therapeutic Implications. Journal of Alzheimer’s Disease, 15, 507–521

    Google Scholar 

  • Zamanillo, D., Sprengel, R., Hvalby, Ø., Jensen, V., Burnashev, N., Rozov, A., et al. (1999). Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science, 284, 1805–1811.

    PubMed  Google Scholar 

  • Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor perspectives in biology, 4(3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Galsworthy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galsworthy, M., Arden, R., Chabris, C. (2014). Animal Models of General Cognitive Ability for Genetic Research into Cognitive Functioning. In: Finkel, D., Reynolds, C. (eds) Behavior Genetics of Cognition Across the Lifespan. Advances in Behavior Genetics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7447-0_9

Download citation

Publish with us

Policies and ethics