Skip to main content

Semi-parametric Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes

  • Chapter
  • First Online:
  • 4759 Accesses

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

In this chapter, we consider semi-parametric approaches to finding the optimal dynamic treatment regime via modeling contrasts of conditional mean outcomes. In particular, we present G-estimation and regret-based methods including an iterative minimization method. We elucidate the connections between the different types of models assumed (e.g. blips, regrets, and Q-functions) as well as the estimation approaches themselves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    While the 0/1 coding of treatment is widely used in the causal inference literature, the − 1/1 coding is more common in Q-learning and SMART design literature, and hence we will adopt it in this chapter as in the rest of the book.

References

  • Almirall, D., Ten Have, T., & Murphy, S. A. (2010). Structural nested mean models for assessing time-varying effect moderation. Biometrics, 66, 131–139.

    Article  MathSciNet  MATH  Google Scholar 

  • Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91, 444–455.

    Article  MATH  Google Scholar 

  • Chakraborty, B., Collins, L. M., Strecher, V. J., & Murphy, S. A. (2009). Developing multicomponent interventions using fractional factorial designs. Statistics in Medicine28, 2687–2708.

    Article  MathSciNet  Google Scholar 

  • Chakraborty, B., Laber, E. B., & Zhao, Y. (2013). Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics, (in press).

    Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Henmi, M., & Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions. Biometrika91, 929–941.

    Article  MathSciNet  MATH  Google Scholar 

  • Joffe, M. M., & Brensinger, C. (2003). Weighting in instrumental variables and G-estimation. Statistics in Medicine22, 1285–1303.

    Article  Google Scholar 

  • Jones, H. (2010). Reinforcement-based treatment for pregnant drug abusers (home ii). Bethesda: National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT01177982?term=jones+pregnant&rank=9.

  • Moodie, E. E. M., Platt, R. W., & Kramer, M. S. (2009). Estimating response-maximized decision rules with applications to breastfeeding. Journal of the American Statistical Association104, 155–165.

    Article  MathSciNet  Google Scholar 

  • Murphy, S. A. (2005a). An experimental design for the development of adaptive treatment strategies. Statistics in Medicine24, 1455–1481.

    Article  MathSciNet  Google Scholar 

  • Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay in principles. Section 9 (translation published in 1990). Statistical Science5, 472–480.

    Google Scholar 

  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Communications in Statistics23, 2379–2412.

    Article  MathSciNet  MATH  Google Scholar 

  • Robins, J. M. (1997). Causal inference from complex longitudinal data. In M. Berkane (Ed.), Latent variable modeling and applications to causality: Lecture notes in statistics (pp. 69–117). New York: Springer.

    Chapter  Google Scholar 

  • Robins J. M. (1999a). Marginal structural models versus structural nested models as tools for causal inference. In: M. E. Halloran & D. Berry (Eds.) Statistical models in epidemiology: The environment and clinical trials. IMA, 116, NY: Springer-Verlag, pp. 95–134.

    Google Scholar 

  • Robins, J. M., & Hernán, M. A. (2009). Estimation of the causal effects of time-varying exposures. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology66, 688–701.

    Article  Google Scholar 

  • Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Software42, 1–52.

    Google Scholar 

  • Stewart, C. E., Moseley, M. J., Stephens, D. A., & Fielder, A. R. (2004). Treatment dose-response in amblyopia therapy: The Monitored Occlusion Treatment of Amblyopia Study (MOTAS). Investigations in Ophthalmology and Visual Science45, 3048–3054.

    Article  Google Scholar 

  • Stone, R. M., Berg, D. T., George, S. L., Dodge, R. K., Paciucci, P. A., Schulman, P., Lee, E. J., Moore, J. O., Powell, B. L., & Schiffer, C. A. (1995). Granulocyte macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. The New England Journal of Medicine332, 1671–1677.

    Article  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakraborty, B., Moodie, E.E.M. (2013). Semi-parametric Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes. In: Statistical Methods for Dynamic Treatment Regimes. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7428-9_4

Download citation

Publish with us

Policies and ethics