Skip to main content

Carotid Plaque Stress Analysis: Issues on Patient-Specific Modeling

  • Chapter
  • First Online:
  • 1254 Accesses

Abstract

Plaque stress analysis has been widely studied for understanding the mechanism of plaque initiation, development, and rupture. With development of computational power and medical imaging technique, plaque stress analysis has evolved from simplified 2D idealized mathematical model to much more complex model with 3D patient-specific structure. In this chapter, two issues regarding patient-specific plaque stress analysis have been studied: (1) patient-specific geometry and (2) patient-specific material properties. By using multispectral carotid MRI, 3D plaque geometries were reconstructed for one symptomatic patient and one asymptomatic patient with multicomponents, the followed plaque stress analysis showed plaque stress in the symptomatic patient had much higher value than that in the asymptomatic patient. Furthermore by analyzing carotid artery motion in one cardiac cycle, an anisotropic material model was fitted to the motion pattern of the selected carotid artery section. Then the fitted patient-specific material model was successfully applied to plaque stress analysis for the corresponding plaque sample. It is believed that plaque stress analysis with patient-specific modeling will be helpful in the identification of high-rupture risk patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336(18):1276–1282

    Article  PubMed  CAS  Google Scholar 

  2. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, Takaya N, Polissar NL, Yuan C (2005) In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque. Circulation 29:3437–3444

    Article  Google Scholar 

  3. Casscells W, Naghavi M, Eillerson JT (2003) Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 107(16):2072–2075

    Article  PubMed  Google Scholar 

  4. Chaturvedi S et al (2005) Carotid endarterectomy – an evidence-based review. Neurology 65:794–801

    Article  PubMed  CAS  Google Scholar 

  5. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structure analysis with histopathologicla correlation. Circulation 87(4):1179–1187

    Article  PubMed  CAS  Google Scholar 

  6. Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomed Eng 105(3):268–274

    CAS  Google Scholar 

  7. Davies MJ (1990) A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation 82(3 suppl):II38–II46

    PubMed  CAS  Google Scholar 

  8. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  PubMed  Google Scholar 

  9. Gao H, Long Q, Howarth SPS, Tang TY, Li ZY, Graves MJ, Gillard JH (2009) The reproducibility study of 3D arterial plaque reconstruction and its effects to the stress analysis based on multiple sequence MRI images. J Magn Reson Imaging 30(1):85–93

    Article  PubMed  Google Scholar 

  10. Gao H, Long Q, Graves M, Gillard JH, Li ZY (2009) Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in vivo magnetic resonance images of four patients. J Biomech 42(10):1416–1423

    Article  PubMed  Google Scholar 

  11. Gao H, Long Q et al (2009) Stress analysis of carotid atheroma in a transient ischaemic attack patient using the MRI-based fluid–structure interaction method. Br J Radiol 82(Spec No 1):S46–S54

    Article  PubMed  Google Scholar 

  12. Gao H, Long Q (2011) Stress analysis on carotid atherosclerotic plaques by fluid structure interaction. In: Jasjit SS, Chirinjeev K, Filippo M (eds) Atherosclerosis disease management. Springer, Berlin, pp 87–118

    Chapter  Google Scholar 

  13. Gao H et al (2011) Stress analysis of carotid atheroma in transient ischemic attack patients: evidence for extreme stress-induced plaque rupture. Ann Biomed Eng. doi:10.1007/s10439-011-0314-5

    Google Scholar 

  14. Gasser TC, Holzapfel GA (2007) Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng 35(5):711–723

    Article  PubMed  Google Scholar 

  15. Hatsukami TS, Ross R, Polissar NL et al (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102:959–964

    Article  PubMed  CAS  Google Scholar 

  16. Huang X, Teng Z, Canton G, Ferguson M, Yuan C, Tang D (2010) Intraplaque hemorrhage is associated with higher structural stresses in human atherosclerotic plaques: an in vivo MRI-based 3D fluid–structure interaction study. Biomed Eng Online 9:86

    Article  PubMed  Google Scholar 

  17. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  18. Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30(4):509–523

    Article  PubMed  CAS  Google Scholar 

  19. Kock SA, Nygaard JV, Eldrup N, Frund ET, Klarke A, Paaske WP, Falk E, Kimi WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid–structure interaction models. J Biomech 41(8):1651–1658

    Article  PubMed  Google Scholar 

  20. Leach JR, Rayz VL, Soares B, Wintermark M, Mofrad MR, Saloner D (2010) Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Ann Biomed Eng 38(8):2748–2765

    Article  PubMed  Google Scholar 

  21. Li ZY, Howarth SPS, Tang T, Graves MJ, U-King-Im J, Trivedi RA, Kirkpatrick PJ, Gillard JH (2007) Structure analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg 45(4):768–775

    Article  PubMed  Google Scholar 

  22. Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical data. J Biomech 41(12):2618–2627

    Article  PubMed  Google Scholar 

  23. Ohayon J, Finet G, Gharib AM, Heerzka DA et al (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 295(2):H717–H727

    Article  PubMed  CAS  Google Scholar 

  24. Redgrave JN, Gallaqher P, Lovett JK, Rothwell PM (2008) Critical cap thickness and rupture in symptomatic carotid plaques: the oxford plaque study. Stroke 39(6):1722–1729

    Article  PubMed  Google Scholar 

  25. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944

    Article  PubMed  CAS  Google Scholar 

  26. Richardson PD (2002) Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann Biomed Eng 30(4):524–536

    Article  PubMed  Google Scholar 

  27. Saam T, Ferguson M, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsilao TS, Yuan C (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239

    Article  PubMed  CAS  Google Scholar 

  28. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41(4 suppl S):15S–22S

    Article  PubMed  CAS  Google Scholar 

  29. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32(7):947–960

    Article  PubMed  Google Scholar 

  30. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE et al (2004) 3D computational mechanical analysis for human atherosclerotic plaques using MRI-based models with fluid–structure interactions. Lect Notes Comput Sci 3217(1):328–336

    Article  Google Scholar 

  31. Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed Eng Online 8:15

    Article  PubMed  CAS  Google Scholar 

  32. Trivedi RA, U-king-Im JM, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, Gillard JH (2004) MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology 46:738–743

    Article  PubMed  Google Scholar 

  33. Trivedi RA, Mallawarachi C, U-king-Im JM et al (2006) Identifying Inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601–1606

    Article  PubMed  CAS  Google Scholar 

  34. Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C (2010) MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol 7(3):165–173

    Article  PubMed  Google Scholar 

  35. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J et al (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15:62–67

    Article  PubMed  Google Scholar 

  36. Yuan C, Zhang S, Polissar NL, Echelard D et al (2002) Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105:181–185

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the British Heart Foundation (FS/06/048). The authors like to thank Dr ZY Li, Dr M Graves, M.D. JH Gillard from Department of Radiology, Cambridge University, for their contributions to all MR images, and collaborations in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, H., Long, Q. (2014). Carotid Plaque Stress Analysis: Issues on Patient-Specific Modeling. In: Saba, L., Sanches, J., Pedro, L., Suri, J. (eds) Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7425-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7425-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7424-1

  • Online ISBN: 978-1-4614-7425-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics