Skip to main content

Bifurcations of Random Differential Equations with Bounded Noise

  • Chapter
  • First Online:

Abstract

We review recent results from the theory of random differential equations with bounded noise. Assuming the noise to be “sufficiently robust in its effects” we discuss the feature that any stationary measure of the system is supported on a “Minimal Forward Invariant” (MFI) set. We review basic properties of the MFI sets, including their relationship to attractors in systems where the noise is small. In the main part of the paper we discuss how MFI sets can undergo discontinuous changes that we have called hard bifurcations. We characterize such bifurcations for systems in one and two dimensions and we give an example of the effects of bounded noise in the context of a Hopf–Andronov bifurcation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Araújo, V.: Ann. Inst. Henri Poincaré, Analyse non linéaire 17, 307 (2000)

    Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  3. Arnold, L.: IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics, Madras, 1999. Solid Mech. Appl., vol. 85, pp. 15. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  4. Arnold, L., Bleckert, G., Schenk-Hoppé, K.R.: In: Crauel, H., Gundlach, M. (eds.) Stochastic Dynamics (Bremen, 1997), pp. 71. Springer, Berlin (1999)

    Google Scholar 

  5. Arnold, L., Kliemann, W.: On unique ergodicity for degenerate diffusions. Stochastics 21, 41 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, L., Sri Namachchivaya, N., Schenk-Hoppé, K.R.: Int. J. Bifur. Chaos Appl. Sci. Eng. 6, 1947 (1996)

    Google Scholar 

  7. Arnold, V.I., Afraimovich, V.S., Il’yashenko, Yu.S., Shil’nikov, L.P.: Bifurcation Theory and Catastrophe Theory. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  9. Bakhtin, Y., Hurth, T.: Nonlinearity 25, 2937 (2012) (unpublished)

    Google Scholar 

  10. Bashkirtseva, I., Ryashko, L., Schurz, H.: Chaos Solit. Fract. 39, 72 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bena, I.: Int. J. Modern Phys. B 20, 2825 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Botts, R.T., Homburg, A.J., Young, T.R.: Discrete Contin. Dyn. Syst. Ser. A 32, 2997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: J. Eur. Math. Soc. 6, 399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bovier, A., Gayrard, V., Klein, M.: J. Eur. Math. Soc. 7, 69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colombo, G., Pra, P.D., Křivan, V., Vrkoč, I.: Math. Control Signals Syst. 16, 95 (2003)

    Article  MATH  Google Scholar 

  16. Colonius, F., Gayer, T., Kliemann, W.: SIAM J. Appl. Dyn. Syst. 7, 79 (2007)

    Article  MathSciNet  Google Scholar 

  17. Colonius, F., Homburg, A.J., Kliemann, W.: J. Differ. Equat. Appl. 16, 127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colonius, F., Kliemann, W.: In: Crauel, H., Gundlach, M. (eds.) Stochastic Dynamics. Springer, Berlin (1999)

    Google Scholar 

  19. Colonius, F., Kliemann, W.: The Dynamics of Control. Birkhauser Boston, Boston (2000)

    Book  Google Scholar 

  20. Crauel, H., Imkeller, P., Steinkamp, M.: In: Crauel, H., Gundlach, M. (eds.) Stochastic Dynamics. Springer, Berlin (1999)

    Google Scholar 

  21. d’Onofrio, A., Gandolfi, A., Gattoni, S.: Phys. A Stat. Mech. Appl. 91, 6484 (2012)

    Google Scholar 

  22. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  23. Froyland, G., Stancevic, O.: ArXiv:1106.1954v2 [math.DS] (2011) (unpublished)

    Google Scholar 

  24. Gayer, T.: J. Differ. Equat. 201, 177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghil, M., Chekroun, M.D., Simonnet, E.: Phys. D 237, 2111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Homburg, A.J., Young, T.R.: Regular Chaotic Dynam. 11, 247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Homburg, A.J., Young, T.R.: Topol. Methods Nonlin. Anal. 35, 77 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Horsthemke, W., Lefever, R.: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics, vol. 15. Springer, Berlin (1984)

    Google Scholar 

  29. Johnson, R.: In: Crauel, H., Gundlach, M. (eds.) Stochastic Dynamics. Springer, Berlin (1999)

    Google Scholar 

  30. Kliemann, W.: Ann. Probab. 15, 690 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  32. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  33. Lamb, J.S.W., Rasmussen, M., Rodrigues, C.S.: ArXiv:1105.5018v1 [math.DS] (2011) (unpublished)

    Google Scholar 

  34. Mallick, K., Marcq, P.: Eur. Phys. J. B 36 119 (2003)

    Article  Google Scholar 

  35. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  36. Nadzieja, T.: Czechoslovak Math. J. 40, 195 (1990)

    MathSciNet  Google Scholar 

  37. Ridolfi, L., D’Odorico, P., Laio, F.: Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  38. Rodrigues, C.S., Grebogi, C., de Moura, A.P.S.: Phys. Rev. E 82, 046217 (2010)

    Article  MathSciNet  Google Scholar 

  39. Schütte, C., Huisinga, W., Meyn, S.: Ann. Appl. Probab. 14, 419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tateno, T.: Phys. Rev. E 65, 021901 (2002)

    Article  MathSciNet  Google Scholar 

  41. Wieczorek, S.: Phys. Rev. E 79, 036209 (2009)

    Article  MathSciNet  Google Scholar 

  42. Zeeman, E.C.: Nonlinearity 1, 115 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeeman, E.C.: Bull. Lond. Math. Soc. 20, 545 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zmarrou, H., Homburg, A.J.: Ergod. Theor. Dyn. Syst. 27, 1651 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zmarrou, H., Homburg, A.J.: Discrete Contin. Dyn. Syst. Ser. B 10, 719 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Homburg, A.J., Young, T.R., Gharaei, M. (2013). Bifurcations of Random Differential Equations with Bounded Noise. In: d'Onofrio, A. (eds) Bounded Noises in Physics, Biology, and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7385-5_9

Download citation

Publish with us

Policies and ethics