Skip to main content

Clusterin

  • Chapter
  • First Online:

Abstract

The clusterin gene (CLU, also known as ApoJ) has been investigated as a functional candidate for involvement in Alzheimer’s disease (AD), with controversial evidence, but was unequivocally identified as a genetic risk factor when two large independent genome-wide association studies detected a link between the locus and AD risk, a finding which has received significant replication subsequently. With a plethora of biological functions, including roles in cell cycle control, lipid metabolism and neuroinflammation, it remains to be determined how the gene is mechanistically linked to alteration in AD risk, and which are the specific genetic variants underlying this association.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    PubMed  CAS  Google Scholar 

  2. Lambert J-C et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41(10):1094–1099

    PubMed  CAS  Google Scholar 

  3. Carrasquillo MM et al (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67(8):961–964

    PubMed  Google Scholar 

  4. Corneveaux JJ et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19(16):3295–3301

    PubMed  CAS  Google Scholar 

  5. Seshadri S et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    PubMed  CAS  Google Scholar 

  6. Jun G et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67(12):1473–1484

    Google Scholar 

  7. Blaschuk O, Burdzy K, Fritz IB (1983) Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J Biol Chem 258(12):7714–7720

    PubMed  CAS  Google Scholar 

  8. de Silva HV et al (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29(22):5380–5389

    PubMed  Google Scholar 

  9. Jenne DE, Tschopp J (1989) Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci U S A 86(18):7123–7127

    PubMed  CAS  Google Scholar 

  10. Kirszbaum L, Bozas SE, Walker ID (1992) SP-40,40, a protein involved in the control of the complement pathway, possesses a unique array of disulphide bridges. FEBS Lett 297(1–2):70–76

    PubMed  CAS  Google Scholar 

  11. Trougakos IP et al (2009) Advances and challenges in basic and translational research on clusterin. Cancer Res 69(2):403–406

    PubMed  CAS  Google Scholar 

  12. Ling IF et al (2012) Genetics of clusterin isoform expression and Alzheimer’s disease risk. PLoS ONE 7(4):e33923

    PubMed  CAS  Google Scholar 

  13. Rizzi F, Bettuzzi S (2010) The clusterin paradigm in prostate and breast carcinogenesis. Endocr Relat Cancer 17(1):R1–R17

    PubMed  CAS  Google Scholar 

  14. Andersen CL et al (2007) Clusterin expression in normal mucosa and colorectal cancer. Mol Cell Proteomics 6(6):1039–1048

    PubMed  CAS  Google Scholar 

  15. Leskov KS et al (2003) Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278(13):11590–11600

    PubMed  CAS  Google Scholar 

  16. Cochrane DR et al (2007) Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 282(4):2278–2287

    PubMed  CAS  Google Scholar 

  17. Schepeler T et al (2007) Clusterin expression can be modulated by changes in TCF1-mediated Wnt signaling. J Mol Signal 2:6

    PubMed  Google Scholar 

  18. Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    PubMed  CAS  Google Scholar 

  19. Pasinetti GM et al (1994) Clusterin (SGP-2): a multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J Comp Neurol 339(3):387–400

    PubMed  CAS  Google Scholar 

  20. Saura J et al (2003) Microglial apolipoprotein E and astroglial apolipoprotein J expression in vitro: opposite effects of lipopolysaccharide. J Neurochem 85(6):1455–1467

    PubMed  CAS  Google Scholar 

  21. Charnay Y et al (2008) Clusterin expression during fetal and postnatal CNS development in mouse. Neuroscience 155(3):714–724

    PubMed  CAS  Google Scholar 

  22. Morgan TE et al (1999) The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89(3):687–699

    PubMed  CAS  Google Scholar 

  23. Lymar ES et al (2000) Clusterin gene in rat sertoli cells is regulated by a core-enhancer element. Biol Reprod 63(5):1341–1351

    PubMed  CAS  Google Scholar 

  24. Zwain IH, Grima J, Cheng CY (1994) Regulation of clusterin secretion and mRNA expression in astrocytes by cytokines. Mol Cell Neurosci 5(3):229–237

    PubMed  CAS  Google Scholar 

  25. Jin G, Howe PH (1997) Regulation of clusterin gene expression by transforming growth factor beta. J Biol Chem 272(42):26620–26626

    PubMed  CAS  Google Scholar 

  26. Jin G, Howe PH (1999) Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos. Eur J Biochem 263(2):534–542

    PubMed  CAS  Google Scholar 

  27. Michel D et al (1995) The expression of the avian clusterin gene can be driven by two alternative promoters with distinct regulatory elements. Eur J Biochem 229(1):215–223

    PubMed  CAS  Google Scholar 

  28. Michel D et al (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328(Pt 1):45–50

    PubMed  CAS  Google Scholar 

  29. Thomas-Tikhonenko A et al (2004) Myc-transformed epithelial cells down-regulate clusterin, which inhibits their growth in vitro and carcinogenesis in vivo. Cancer Res 64(9):3126–3136

    PubMed  CAS  Google Scholar 

  30. Chayka O et al (2009) Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. J Natl Cancer Inst 101(9):663–677

    PubMed  CAS  Google Scholar 

  31. Li X et al (2002) IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem 277(47):45129–45140

    PubMed  CAS  Google Scholar 

  32. Criswell T et al (2005) Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280(14):14212–14221

    PubMed  CAS  Google Scholar 

  33. Lund P et al (2006) Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene 25(35):4890–4903

    PubMed  CAS  Google Scholar 

  34. Kyprianou N et al (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51(1):162–166

    PubMed  CAS  Google Scholar 

  35. Nuutinen T et al (2005) Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int 47(8):528–538

    PubMed  CAS  Google Scholar 

  36. Rosemblit N, Chen CL (1994) Regulators for the rat clusterin gene: DNA methylation and cis-acting regulatory elements. J Mol Endocrinol 13(1):69–76

    PubMed  CAS  Google Scholar 

  37. Jones SE, Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34(5):427–431

    PubMed  CAS  Google Scholar 

  38. Humphreys DT et al (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274(11):6875–6881

    PubMed  CAS  Google Scholar 

  39. Nuutinen T et al (2009) Clusterin: a forgotten player in Alzheimer's disease. Brain Res Rev 61(2):89–104

    PubMed  CAS  Google Scholar 

  40. Law GL, Griswold MD (1994) Activity and form of sulfated glycoprotein 2 (clusterin) from cultured Sertoli cells, testis, and epididymis of the rat. Biol Reprod 50(3):669–679

    PubMed  CAS  Google Scholar 

  41. Lakins JN et al (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41(1):282–291

    PubMed  CAS  Google Scholar 

  42. Bailey RW et al (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40(39):11828–11840

    PubMed  CAS  Google Scholar 

  43. Poon S et al (2000) Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39(51):15953–15960

    PubMed  CAS  Google Scholar 

  44. Zlokovic BV (1996) Cerebrovascular transport of Alzheimer’s amyloid beta and apolipoproteins J and E: possible anti-amyloidogenic role of the blood–brain barrier. Life Sci 59(18):1483–1497

    PubMed  CAS  Google Scholar 

  45. Freixes M et al (2004) Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. Acta Neuropathol 108(4):295–301

    PubMed  CAS  Google Scholar 

  46. Kumita JR et al (2007) The extracellular chaperone clusterin potently inhibits human lysozyme amyloid formation by interacting with prefibrillar species. J Mol Biol 369(1):157–167

    PubMed  CAS  Google Scholar 

  47. Reddy KB et al (1996) Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 35(19):6157–6163

    PubMed  CAS  Google Scholar 

  48. Scaltriti M et al (2004) Intracellular clusterin induces G2-M phase arrest and cell death in PC-3 prostate cancer cells1. Cancer Res 64(17):6174–6182

    PubMed  CAS  Google Scholar 

  49. Yang CR et al (2000) Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci U S A 97(11):5907–5912

    PubMed  CAS  Google Scholar 

  50. McLaughlin L et al (2000) Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest 106(9):1105–1113

    PubMed  CAS  Google Scholar 

  51. Anderson R et al (1998) Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience 85(1):93–110

    PubMed  CAS  Google Scholar 

  52. Imhof A et al (2006) Sustained astrocytic clusterin expression improves remodeling after brain ischemia. Neurobiol Dis 22(2):274–283

    PubMed  CAS  Google Scholar 

  53. Ovcharenko I et al (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32(Web Server issue):W280–W286

    PubMed  CAS  Google Scholar 

  54. Ishikawa Y et al (1998) Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta. Arterioscler Thromb Vasc Biol 18(4):665–672

    PubMed  CAS  Google Scholar 

  55. Newkirk MM et al (1999) Systemic lupus erythematosus, a disease associated with low levels of clusterin/apoJ, an antiinflammatory protein. J Rheumatol 26(3):597–603

    PubMed  CAS  Google Scholar 

  56. Kujiraoka T et al (2006) Serum apolipoprotein j in health, coronary heart disease and type 2 diabetes mellitus. J Atheroscler Thromb 13(6):314–322

    PubMed  CAS  Google Scholar 

  57. Vakeva A, Laurila P, Meri S (1993) Co-deposition of clusterin with the complement membrane attack complex in myocardial infarction. Immunology 80(2):177–182

    PubMed  CAS  Google Scholar 

  58. Poulakou MV et al (2008) Apolipoprotein J and leptin levels in patients with coronary heart disease. In Vivo 22(4):537–542

    PubMed  CAS  Google Scholar 

  59. Harding MA et al (1991) The SGP-2 gene is developmentally regulated in the mouse kidney and abnormally expressed in collecting duct cysts in polycystic kidney disease. Dev Biol 146(2):483–490

    PubMed  CAS  Google Scholar 

  60. Devauchelle V et al (2004) DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets. Genes Immun 5(8):597–608

    PubMed  CAS  Google Scholar 

  61. Gao J et al (2011) An exploratory study on CLU, CR1 and PICALM and Parkinson disease. PLoS ONE 6(8):e24211

    PubMed  CAS  Google Scholar 

  62. Miyake H et al (2000) Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60(1):170–176

    PubMed  CAS  Google Scholar 

  63. Redondo M et al (2000) Overexpression of clusterin in human breast carcinoma. Am J Pathol 157(2):393–399

    PubMed  CAS  Google Scholar 

  64. Pucci S et al (2004) Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene 23(13):2298–2304

    PubMed  CAS  Google Scholar 

  65. Miyake H et al (2001) Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res 7(12):4245–4252

    PubMed  CAS  Google Scholar 

  66. Cappelletti V et al (2008) Patterns and changes in gene expression following neo-adjuvant anti-estrogen treatment in estrogen receptor-positive breast cancer. Endocr Relat Cancer 15(2):439–449

    PubMed  CAS  Google Scholar 

  67. Chi KN et al (2005) A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97(17):1287–1296

    PubMed  CAS  Google Scholar 

  68. Laskin JJ et al (2012) Phase I/II trial of custirsen (OGX-011), an inhibitor of clusterin, in combination with a gemcitabine and platinum regimen in patients with previously untreated advanced non-small cell lung cancer. J Thorac Oncol 7(3):579–586

    PubMed  CAS  Google Scholar 

  69. So A et al (2005) Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther 4(12):1837–1849

    PubMed  CAS  Google Scholar 

  70. Chia S et al (2009) Phase II trial of OGX-011 in combination with docetaxel in metastatic breast cancer. Clin Cancer Res 15(2):708–713

    PubMed  CAS  Google Scholar 

  71. Hellebrekers DM et al (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138–4148

    PubMed  CAS  Google Scholar 

  72. Golenkina SA et al (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations. Mol Biol (Mosk) 44(4):620–626

    CAS  Google Scholar 

  73. Yu J-T et al (2010) Implication of CLU gene polymorphisms in Chinese patients with Alzheimer’s disease. Clinica Chimica Acta 411(19–20):1516–1519

    CAS  Google Scholar 

  74. Chen LH et al (2012) Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer's disease in a southern Chinese population. Neurobiol Aging 33(1):210.e1–210.e7

    CAS  Google Scholar 

  75. Ma JF et al (2011) Association study of clusterin polymorphism rs11136000 with late onset Alzheimer’s disease in Chinese Han population. Am J Alzheimers Dis Other Demen 26(8):627–630

    PubMed  Google Scholar 

  76. Logue MW et al (2011) A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol 68(12):1569–1579

    PubMed  Google Scholar 

  77. Lee JH et al (2010) Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean hispanic individuals. Arch Neurol 68(3):320–328

    PubMed  Google Scholar 

  78. The International HapMap Project (2003) International HapMap Consortium. Nature 426(6968):789–796

    Google Scholar 

  79. Barrett JC et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    PubMed  CAS  Google Scholar 

  80. Burns JJ (1957) Missing step in man, monkey and guinea pig required for the biosynthesis of l-ascorbic acid. Nature 180(4585):553

    PubMed  CAS  Google Scholar 

  81. Wang YX et al (2010) Soluble epoxide hydrolase in atherosclerosis. Curr Atheroscler Rep 12(3):174–183

    PubMed  Google Scholar 

  82. Sato K et al (2004) Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred. J Hum Genet 49(1):29–34

    PubMed  CAS  Google Scholar 

  83. Xu Y et al (2011) Association between polymorphisms of CYP2J2 and EPHX2 genes and risk of coronary artery disease. Pharmacogenet Genomics 21(8):489–494

    PubMed  CAS  Google Scholar 

  84. Fornage M et al (2005) The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke. Hum Mol Genet 14(19):2829–2837

    PubMed  CAS  Google Scholar 

  85. Bock AJ et al (2011) SCARA3 mRNA is overexpressed in ovarian carcinoma compared with breast carcinoma effusions. Hum Pathol 43(5):669–674

    PubMed  Google Scholar 

  86. Yu G et al (2006) CSR1 suppresses tumor growth and metastasis of prostate cancer. Am J Pathol 168(2):597–607

    PubMed  CAS  Google Scholar 

  87. Han HJ, Tokino T, Nakamura Y (1998) CSR, a scavenger receptor-like protein with a protective role against cellular damage causedby UV irradiation and oxidative stress. Hum Mol Genet 7(6):1039–1046

    PubMed  CAS  Google Scholar 

  88. Tycko B et al (1996) Polymorphisms in the human apolipoprotein-J/clusterin gene: ethnic variation and distribution in Alzheimer’s disease. Hum Genet 98(4):430–436.

    Google Scholar 

  89. Miwa Y et al (2005) Insertion/deletion polymorphism in clusterin gene influences serum lipid levels and carotid intima-media thickness in hypertensive Japanese females. Biochem Biophys Res Commun 331(4):1587–1593

    PubMed  CAS  Google Scholar 

  90. Ferrari R et al (2012) Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging 33(8):1846.e7–1846.e18

    CAS  Google Scholar 

  91. Guerreiro RJ et al (2010) Genetic variability in CLU and its association with Alzheimer’s disease. PLoS ONE 5(3):e9510

    PubMed  Google Scholar 

  92. Bettens K et al (2012) Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener 7(1):3

    PubMed  CAS  Google Scholar 

  93. May PC et al (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5(6):831–839

    PubMed  CAS  Google Scholar 

  94. Lidstrom AM et al (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154(2):511–521

    PubMed  CAS  Google Scholar 

  95. Harr SD et al (1996) Brain expression of apolipoproteins E, J, and A-I in Alzheimer’s disease. J Neurochem 66(6):2429–2435

    PubMed  CAS  Google Scholar 

  96. Sihlbom C et al (2008) Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res 33(7):1332–1340

    PubMed  CAS  Google Scholar 

  97. Thambisetty M et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67(7):739–748

    PubMed  Google Scholar 

  98. Nilselid AM et al (2006) Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int 48(8):718–728

    PubMed  CAS  Google Scholar 

  99. Schurmann B et al (2011) Association of the Alzheimer’s disease clusterin risk allele with plasma clusterin concentration. J Alzheimers Dis 25(3):421–424

    PubMed  Google Scholar 

  100. Mengel-From J et al (2010) Genetic variations in the CLU and PICALM genes are associated with cognitive function in the oldest old. Neurobiol Aging 32(3):554.e7–554.e11

    Google Scholar 

  101. Thambisetty M et al (2012) Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment. Neuroimage 59(1):212–217

    PubMed  CAS  Google Scholar 

  102. Schrijvers EM et al (2011) Plasma clusterin and the risk of Alzheimer disease. JAMA 305(13):1322–1326

    PubMed  CAS  Google Scholar 

  103. Grassilli E et al (1992) SGP-2, apoptosis, and aging. Ann N Y Acad Sci 663:471–474

    PubMed  CAS  Google Scholar 

  104. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS ONE 3(7):e2698

    PubMed  Google Scholar 

  105. McGeer PL, Kawamata T, Walker DG (1992) Distribution of clusterin in Alzheimer brain tissue. Brain Res 579(2):337–341

    PubMed  CAS  Google Scholar 

  106. Giannakopoulos P et al (1998) Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol 95(4):387–394

    PubMed  CAS  Google Scholar 

  107. Bertrand P et al (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res Mol Brain Res 33(1):174–178

    PubMed  CAS  Google Scholar 

  108. Ghiso J et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293(Pt 1):27–30

    PubMed  CAS  Google Scholar 

  109. Matsubara E et al (1996) Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem J 316(Pt 2):671–679

    PubMed  CAS  Google Scholar 

  110. DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41(2):193–202

    PubMed  CAS  Google Scholar 

  111. Oda T et al (1994) Purification and characterization of brain clusterin. Biochem Biophys Res Commun 204(3):1131–1136

    PubMed  CAS  Google Scholar 

  112. DeMattos RB et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 99(16):10843–10848

    PubMed  CAS  Google Scholar 

  113. Yerbury JJ et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J 21(10):2312–2322

    PubMed  CAS  Google Scholar 

  114. Hammad SM et al (1997) Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J Biol Chem 272(30):18644–18649

    PubMed  CAS  Google Scholar 

  115. Nuutinen T et al (2007) Amyloid-beta 1–42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes. Neurochem Int 50(3):540–547

    PubMed  CAS  Google Scholar 

  116. Bell RD et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27(5):909–918

    PubMed  CAS  Google Scholar 

  117. Cotman CW, Su JH (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6(4):493–506

    PubMed  CAS  Google Scholar 

  118. Shin YJ et al (2006) Clusterin enhances proliferation of primary astrocytes through extracellular signal-regulated kinase activation. Neuroreport 17(18):1871–1875

    PubMed  CAS  Google Scholar 

  119. Shim YJ et al (2009) Epidermal growth factor receptor is involved in clusterin-induced astrocyte proliferation. Neuroreport 20(4):435–439

    PubMed  CAS  Google Scholar 

  120. Jick H et al (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631

    PubMed  CAS  Google Scholar 

  121. Gong JS et al (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277(33):29919–29926

    PubMed  CAS  Google Scholar 

  122. Beffert U et al (1998) The neurobiology of apolipoproteins and their receptors in the CNS and Alzheimer’s disease. Brain Res Brain Res Rev 27(2):119–142

    PubMed  CAS  Google Scholar 

  123. Suzuki T et al (2002) Predominant apolipoprotein J exists as lipid-poor mixtures in cerebrospinal fluid. Ann Clin Lab Sci 32(4):369–376

    PubMed  CAS  Google Scholar 

  124. DeMattos RB et al (2001) Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 39(5–6):415–425

    PubMed  CAS  Google Scholar 

  125. Nestlerode CS et al (1999) Apolipoprotein J polymorphisms and serum HDL cholesterol levels in African blacks. Hum Biol 71(2):197–218

    PubMed  CAS  Google Scholar 

  126. Yu JT, Tan L (2012) The role of clusterin in Alzheimer’s disease: pathways, pathogenesis, and therapy. Mol Neurobiol 45(2):314–326

    PubMed  CAS  Google Scholar 

  127. Aisen PS et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289(21):2819–2826

    PubMed  CAS  Google Scholar 

  128. Martin BK et al (2008) Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65(7):896–905

    PubMed  Google Scholar 

  129. Andersen K et al (1995) Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 45(8):1441–1445

    PubMed  CAS  Google Scholar 

  130. Breitner JC et al (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44(2):227–232

    PubMed  CAS  Google Scholar 

  131. Stewart WF et al (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632

    PubMed  CAS  Google Scholar 

  132. Xie Z et al (2005) Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem 93(4):1038–1046

    PubMed  CAS  Google Scholar 

  133. Takase O et al (2008) Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int 73(5):567–577

    PubMed  CAS  Google Scholar 

  134. Han BH et al (2001) Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat Med 7(3):338–343

    PubMed  CAS  Google Scholar 

  135. Navab M et al (2005) An oral apoJ peptide renders HDL antiinflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25(9):1932–1937

    PubMed  CAS  Google Scholar 

  136. Dati G et al (2007) Beneficial effects of r-h-CLU on disease severity in different animal models of peripheral neuropathies. J Neuroimmunol 190(1–2):8–17

    PubMed  CAS  Google Scholar 

  137. Chuang DM et al (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601

    PubMed  CAS  Google Scholar 

  138. Zhang XZ, Li XJ, Zhang HY (2010) Valproic acid as a promising agent to combat Alzheimer's disease. Brain Res Bull 81(1):3–6

    PubMed  CAS  Google Scholar 

  139. Nuutinen T et al (2010) Valproic acid stimulates clusterin expression in human astrocytes: implications for Alzheimer's disease. Neurosci Lett 475(2):64–68

    PubMed  CAS  Google Scholar 

  140. Kamboh MI et al (2012) Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging 33(3):518–521

    PubMed  CAS  Google Scholar 

  141. Wijsman EM et al (2011) Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. NIA-LOAD/NCRAD Family Study Group. PLoS Genet 7(2):e1001308

    PubMed  CAS  Google Scholar 

  142. Schjeide BM et al (2011) The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry 68(2):207–213

    PubMed  CAS  Google Scholar 

  143. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Lord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lord, J., Morgan, K. (2013). Clusterin. In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_3

Download citation

Publish with us

Policies and ethics