Skip to main content

Neotropical Primates and Their Susceptibility to Toxoplasma gondii: New Insights for an Old Problem

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Toxoplasmosis is a parasitic disease affecting warm-blooded vertebrates and caused by Toxoplasma gondii. For most hosts, infection with T. gondii is unapparent or produces subtle and mild clinical outcomes. On the other hand, for some groups of mammals, in particular neotropical nonhuman primates, toxoplasmosis is a severe disease, often with fatal outcomes. However, available data suggest that the response of New World Primates (NWPs) to toxoplasmosis is not homogeneous, and existing information support three distinct response patterns: I that is observed mainly in Callitrichinae (Saguinus, Leontopithecus, and Callithrix), where the disease is markedly severe, with mortality rate close to 100 %; II that is seen in a diverse group of NWPs from families Cebidae (Saimiri and Aotus) and Atelidae (Alouatta, Ateles, Lagothrix), characterized by the occurrence of severe outbreaks with variable mortality rates but the survival of variable number (15–66 %) of individuals with positive serology; and III that is observed in genus Cebus, where the infection induces high and persistent IgG titers, clinical presentation is mild, and the animals rarely die. The reasons for these variable response patterns are not fully clear, but we believe that it may be, at least partially, due to different ecological and behavioral characteristics of NWPs, exposing them to T. gondii in different ways. Moreover, we believe that the variability of T. gondii strains, as well as the possibility of how the immune response against the parasite may have been changed along the evolution process of Platyrrhini, should also be taken into account when analyzing the existence of different response patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recent phylogeographic analysis has shown that capuchins contain two well-supported monophyletic clades, the morphologically distinct “gracile” (or untufted) and “robust” (or tufted) groups, and placed the age of the split at 6.7 Ma (95 % highest posterior density 4.1–9.4 Ma) (Alfaro et al. 2012a). Morphological and behavioral–ecological data also support a division of capuchins into the same two distinct groups. As a consequence Alfaro et al. (2012b) have argued for a division of capuchin monkeys into two genera: Sapajus Kerr, 1792, for the robust capuchins and Cebus Erxleben, 1777, for the gracile capuchins.

  2. 2.

    The capuchin monkeys are particularly complex in their taxonomy. For many years, taxonomic arrangements reduced all tufted capuchin monkeys to just one species, Cebus apella, with 11 and 16 (Hill 1960) subspecies. The most recent revisions, by Groves (2001) and Silva (2001), both based on morphology, differently recognized, as species, the following: apella and macrocephalus in the Amazon and libidinosus, nigritus, robustus, cay, and xanthosternos to the south. Groves (2001) presented an alternative as follows: Amazon forms C. apella apella, C. a. fatuellus, C. a. macrocephalus, C. a. peruanus, and C. a. tocantinus and southern forms C. libidinosus libidinosus, C. l. pallidus, C. l. paraguayanus, C. l. juruanus (Amazonian), C. nigritus nigritus, C. n. robustus, C. n. cucullatus, and C. xanthosternos (see Fragaszy et al. (2004) and Rylands et al. (2005)). In Brazil, captive capuchins (independently of origin) are generally named as Cebus apella, and in many occasions and in different institutions, individuals of different subspecies or species are kept together generating hybrid groups (M.C.M. Kierulff, personal observation). Because of all these problems, we decided to maintain the original names used for Cebus species cited in the references, mostly named just as Cebus apella with no distinction to subspecies, even known that it refers to species other than the Amazonians.

References

  • Aguiar JM, Lacher TE Jr (2003) On the morphological distinctiveness of Callithrix humilis Van Roosmalen et al. 1998. Neotrop Primates 11:11–18

    Google Scholar 

  • Alfaro JWL, Boubli JP, Olson LE, Di Fiore A, Wilson B, Gutierrez-Espeleta GA, Chiou KL, Schulte M, Neitzel S, Ross V, Schwochow D, Nguyen MTT, Farias I, Janson CH, Alfaro ME (2012a) Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. J Biogeogr 39:272–288

    Google Scholar 

  • Alfaro JWL, Silva JS Jr, Rylands AB, Boubli JP (2012b) How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. Am J Primatol 74(4):273–286. doi:10.1002/ajp.22007:1-14

    PubMed  Google Scholar 

  • Aliberti J (2005) Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nat Rev Immunol 5:162–170

    CAS  PubMed  Google Scholar 

  • Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002a) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3:76–82

    CAS  PubMed  Google Scholar 

  • Aliberti J, Serhan C, Sher A (2002b) Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J Exp Med 196:1253–1262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida-Silva B, Guedes PG, Boubli JP, Strier KB (2005) Deslocamento terrestre e o comportamento de beber em um grupo de barbados (Alouatta guariba clamitans Cabrera, 1940) em Minas Gerais, Brasil. Neotrop Primates 13:1–3

    Google Scholar 

  • Anderson DC, McClure HM (1982) Acute disseminated fatal toxoplasmosis in a squirrel monkey. J Am Vet Med Assoc 181:1363–1366

    CAS  PubMed  Google Scholar 

  • Andrade MCR, Coelho JMCO, Amendoeira MRR, Vicente RT, Cardoso CVP, Ferreira PCBF, Marchevsky RS (2007) Toxoplasmosis in squirrel monkeys: histological and immunohistochemical analysis. Ciência Rural 37:1724–1727

    Google Scholar 

  • Baldwin JD, Baldwin JI (1981) The squirrel monkeys, genus Saimiri. In: Coimbra-Filho AF, Mittermeir RA (eds) Ecology and behavior of neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 241–276

    Google Scholar 

  • Bernsteen L, Gregory CR, Aronson LR, Lirtzman RA, Brummer DG (1999) Acute toxoplasmosis following renal transplantation in three cats and a dog. J Am Vet Med Assoc 215:1123–1126

    CAS  PubMed  Google Scholar 

  • Bicca-Marques JC (1992) Drinking behavior in the black howler monkey (Alouatta caraya). Folia Primatol (Basel) 58:107–111

    CAS  Google Scholar 

  • Bicca-Marques JC, Silva VM, Gomes DF (2011) In: Reis NR, Perachi AL, Pedro WA, Lima IP (eds) Mamíferos do Brasil, 2nd edn. Londrina, PR. pp. 107–150.

    Google Scholar 

  • Blader IJ, Saeij JP (2009) Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117:458–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blanchard N, Gonzalez F, Schaeffer M, Joncker NT, Cheng T, Shastri AJ, Robey EA, Shastri N (2008) Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat Immunol 9:937–944

    CAS  PubMed  Google Scholar 

  • Boinski S (1987) Mating patterns in squirrel-monkeys (Saimiri-Oerstedi) - implications for seasonal sexual dimorphism. Behav Ecol Sociobiol 21:13–21

    Google Scholar 

  • Boothroyd JC (2009) Toxoplasma gondii: 25 years and 25 major advances for the field. Int J Parasitol 39:935–946

    PubMed Central  PubMed  Google Scholar 

  • Bordignon MO, Setz EZF, Caselli CB (2008) Gênero Callicebus Thomas 1903. In: Reis NR, Perachi AL, Andrade FR (eds) Primatas brasileiros. Technical Books, Londrina, pp 153–166

    Google Scholar 

  • Borst GHA, Vanknapen F (1984) Acute acquired toxoplasmosis in primates in a zoo. J Zoo Wildl Med 15:60–62

    Google Scholar 

  • Bouer A, Werther K, Catao-Dias JL, Nunes AL (1999) Outbreak of toxoplasmosis in Lagothrix lagotricha. Folia Primatol (Basel) 70:282–285

    CAS  Google Scholar 

  • Bouer A, Werther K, Machado RZ, Nakaghi AC, Epiphanio S, Catao-Dias JL (2010) Detection of anti-Toxoplasma gondii antibodies in experimentally and naturally infected non-human primates by Indirect Fluorescence Assay (IFA) and indirect ELISA. Rev Bras Parasitol Vet 19:26–31

    PubMed  Google Scholar 

  • Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280:34245–34258

    CAS  PubMed  Google Scholar 

  • Brown CCB, Barker DC (2007) Alimentary system. In: Maxie MG (ed) Pathology of domestic animals. Elsevier, Philadelphia, PA, pp 1–296

    Google Scholar 

  • Brown AD, Zunino GE (1990) Dietary variability in Cebus apella in extreme habitats—evidence for adaptability. Folia Primatol 54:187–195

    CAS  PubMed  Google Scholar 

  • Buzoni-Gatel D, Werts C (2006) Toxoplasma gondii and subversion of the immune system. Trends Parasitol 22:448–452

    CAS  PubMed  Google Scholar 

  • Cadavid AP, Canas L, Estrada JJ, Ramirez LE (1991) Prevalence of anti-Toxoplasma gondii antibodies in Cebus spp in the Santa Fe Zoological Park of Medellin, Colombia. J Med Primatol 20: 259–261

    Google Scholar 

  • Canale GR, Guidorizzi CE, Kierulff MC, Gatto CA (2009) First record of tool use by wild populations of the yellow-breasted capuchin monkey (Cebus xanthosternos) and new records for the bearded capuchin (Cebus libidinosus). Am J Primatol 71:366–372

    PubMed  Google Scholar 

  • Carme B, Ajzenberg D, Demar M, Simon S, Darde ML, Maubert B, de Thoisy B (2009) Outbreaks of toxoplasmosis in a captive breeding colony of squirrel monkeys. Vet Parasitol 163:132–135

    PubMed  Google Scholar 

  • Cedillo-Pelaez C, Rico-Torres CP, Salas-Garrido CG, Correa D (2011) Acute toxoplasmosis in squirrel monkeys (Saimiri sciureus) in Mexico. Vet Parasitol 80:368–371

    Google Scholar 

  • Correa D, Canedo-Solares I, Ortiz-Alegria LB, Caballero-Ortega H, Rico-Torres CP (2007) Congenital and acquired toxoplasmosis: diversity and role of antibodies in different compartments of the host. Parasite Immunol 29:651–660

    CAS  PubMed  Google Scholar 

  • Cunha RGT (2008) Gênero Aotus Illiger 1811. In: Reis NR, Perachi AL, Andrade FR (eds) Primatas brasileiros. Technical Books, Londrina, pp 115–125

    Google Scholar 

  • Cunningham AA, Buxton D, Thomson KM (1992) An epidemic of toxoplasmosis in a captive colony of squirrel monkeys (Saimiri sciureus). J Comp Pathol 107:207–219

    CAS  PubMed  Google Scholar 

  • Däubener W, Hadding U (1997) Cellular immune reactions directed against Toxoplasma gondii with special emphasis on the central nervous system. Med Microbiol Immunol 185:195–206

    PubMed  Google Scholar 

  • de Camps S, Dubey JP, Saville WJ (2008) Seroepidemiology of Toxoplasma gondii in zoo animals in selected zoos in the midwestern United States. J Parasitol 94: 648–653

    Google Scholar 

  • De Rodaniche E (1954) Spontaneous toxoplasmosis in the whiteface monkey, Cebus capucinus, in Panama. Am J Trop Med Hyg 3:1023–1025

    Google Scholar 

  • de Thoisy B, Demar M, Aznar C, Carme B (2003) Ecologic correlates of Toxoplasma gondii exposure in free-ranging neotropical mammals. J Wildl Dis 39: 456–459

    Google Scholar 

  • Debierre-Grockiego F, Schwarz RT (2010) Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 20:801–811

    CAS  PubMed  Google Scholar 

  • Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende AG, Santos Mansur D, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT (2007) Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol 179:1129–1137

    CAS  PubMed  Google Scholar 

  • Defler TR (2005) Primates of Colombia: conservation international. 550 p

    Google Scholar 

  • Denkers EY, Butcher BA (2005) Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol 21:35–41

    CAS  PubMed  Google Scholar 

  • Denkers EY, Gazzinelli RT (1998) Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 11:569–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denkers EY, Yap G, Scharton-Kersten T, Charest H, Butcher BA, Caspar P, Heiny S, Sher A (1997) Perforin-mediated cytolysis plays a limited role in host resistance to Toxoplasma gondii. J Immunol 159:1903–1908

    CAS  PubMed  Google Scholar 

  • Dietz HH, Henriksen P, Bille-Hansen V, Henriksen SA (1997) Toxoplasmosis in a colony of new world monkeys. Vet Parasitol 68:299–304

    CAS  PubMed  Google Scholar 

  • Dubey JP (2009) History of the discovery of the life cycle of Toxoplasma gondii. Int J Parasitol 39:877–882

    CAS  PubMed  Google Scholar 

  • Dubey JP, Jones JL (2008) Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38:1257–1278

    CAS  PubMed  Google Scholar 

  • Dubey JP, Su CL (2009) Population biology of Toxoplasma gondii: what’s out and where did they come from. Mem Inst Oswaldo Cruz 104:190–195

    CAS  PubMed  Google Scholar 

  • Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11:267–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP (2010) Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Parasitol 26:190–196

    PubMed  Google Scholar 

  • Epiphanio S, Guimaraes MA, Fedullo DL, Correa SH, Catao-Dias JL (2000) Toxoplasmosis in golden-headed lion tamarins (Leontopithecus chrysomelas) and emperor marmosets (Saguinus imperator) in captivity. J Zoo Wildl Med 31:231–235

    CAS  PubMed  Google Scholar 

  • Epiphanio S, Sa LR, Teixeira RH, Catao-Dias JL (2001) Toxoplasmosis in a wild-caught black lion tamarin (Leontopithecus chrysopygus). Vet Rec 149:627–628

    CAS  PubMed  Google Scholar 

  • Epiphanio S, Sinhorini IL, Catao-Dias JL (2003) Pathology of toxoplasmosis in captive new world primates. J Comp Pathol 129:196–204

    CAS  PubMed  Google Scholar 

  • Feagle JG (1999) Primate adaptation and evolution. Academic, San Diego, CA

    Google Scholar 

  • Fedigan LM (1990) Vertebrate predation in Cebus capucinus: meat eating in a neotropical monkey. Folia Primatol (Basel) 54:196–205

    CAS  Google Scholar 

  • Ferguson DJ, Hutchison WM, Dunachie JF, Siim JC (1974) Ultrastructural study of early stages of asexual multiplication and microgametogony of Toxoplasma gondii in the small intestine of the cat. Acta Pathol Microbiol Scand B Microbiol Immunol 82:167–181

    CAS  PubMed  Google Scholar 

  • Fernandez-Duque E (2006) Aotinae: social monogamy in the only nocturnal haplorhines. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, New York, NY, pp 139–154

    Google Scholar 

  • Ferraroni JJ, Marzochi MC (1980) [Prevalence of Toxoplasma gondii infection in domestic and wild animals, and human groups of the Amazonas region]. Mem Inst Oswaldo Cruz 75: 99–109

    Google Scholar 

  • Ferreira RG, Resende BD, Mannu M, Ottoni EB, Izar P (2002) Bird predation and prey-transfer in brown capuchin monkeys (Cebus apella). Neotrop Primates 10:84–89

    Google Scholar 

  • Fleagle JG, Tejedor MF (2002) Early platyrrhines of southern South America. Cambridge Stud Biol Evolut Anthropol 33:161–173

    Google Scholar 

  • Fragaszy DM, Visalberghi E, Robinson JG (1990) Variability and adaptability in the genus Cebus. Folia Primatol 54:114–118

    CAS  PubMed  Google Scholar 

  • Fragaszy DM, Visalberghi E, Fedigan LM (2004) The complete capuchin—the biology of the genus Cebus. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Freese CH, Oppehheimer JR (1981) The Capuchin monkeys, Genus Cebus. In: Coimbra-Filho AF, Mittermeir RA (eds) Ecology and behavior of neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 331–390

    Google Scholar 

  • Frenkel JK, Dubey JP, Miller NL (1969) Toxoplasma gondii: fecal forms separated from eggs of the nematode Toxocara cati. Science 164:432–433

    CAS  PubMed  Google Scholar 

  • Frenkel JK, Dubey JP, Miller NL (1970) Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science 167:893–896

    CAS  PubMed  Google Scholar 

  • Fujigaki S, Saito K, Takemura M, Maekawa N, Yamada Y, Wada H, Seishima M (2002) L-tryptophan-L-kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase. Infect Immun 70:779–786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta T, Une Y, Omura M, Matsutani N, Nomura Y, Kikuchi T, Hattori S, Yoshikawa Y (2001) Horizontal transmission of Toxoplasma gondii in squirrel monkeys (Saimiri sciureus). Exp Anim 50:299–306

    CAS  PubMed  Google Scholar 

  • Galetti M (1990) Predation on squirrel (Sciurus aestuans) by Capuchin Monkey (Cebus apella). Mammalia 54:152–154

    Google Scholar 

  • Garcia JL, Svoboda WK, Chryssafidis AL, de Souza ML, Shiozawa MM, de Moraes AL, Teixeira GM, Ludwig G, da Silva LR, Hilst C, Navarro IT (2005) Sero-epidemiological survey for toxoplasmosis in wild New World monkeys (Cebus spp.; Alouatta caraya) at the Parana river basin, Parana State, Brazil. Vet Parasitol 133:307–311

    PubMed  Google Scholar 

  • Gardiner CH, Fayer R, Dubey JP (1998) An atlas of protozoan parasites in animal tissues. United States Department of Agriculture, Agriculture Handbook, Washington, DC

    Google Scholar 

  • Gazzinelli R, Xu YH, Hieny S, Cheever A, Sher A (1992) Simultaneous depletion of Cd4+ and Cd8+ Lymphocytes-T is required to reactivate chronic infection with Toxoplasma-gondii. J Immunol 149:175–180

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Eltoum I, Wynn TA, Sher A (1993a) Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151:3672–3681

    CAS  PubMed  Google Scholar 

  • Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A (1993b) Interleukin-12 is required for the T-lymphocyte-independent induction of interferon-gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci U S A 90:6115–6119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzinelli RT, Hayashi S, Wysocka M, Carrera L, Kuhn R, Muller W, Roberge F, Trinchieri G, Sher A (1994) Role of Il-12 in the initiation of cell-mediated-immunity by Toxoplasma-gondii and Its regulation by Il-10 and nitric-oxide. J Eukaryot Microbiol 41:S9

    Google Scholar 

  • Gilbert KA, Stouffer PC (1989) Use of a ground-water source by mantled howler monkeys (Alouatta palliata). Biotropica 21:380

    Google Scholar 

  • Giudice AM, Mudry MD (2000) Drinking behavior in the black howler monkey (Alouatta caraya). Zoocriadores 3:11–19

    Google Scholar 

  • Glander KE (1978) Drinking from arboreal water sources by mantled howling monkeys (Alouatta palliata Gray). Folia Primatol 29:206–217

    CAS  PubMed  Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Gustafsson K, Wattrang E, Fossum C, Heegaard PM, Lind P, Uggla A (1997) Toxoplasma gondii infection in the mountain hare (Lepus timidus) and domestic rabbit (Oryctolagus cuniculus). II. Early immune reactions. J Comp Pathol 117:361–369

    CAS  PubMed  Google Scholar 

  • Gyimesi ZS, Lappin MR, Dubey JP (2006) Application of assays for the diagnosis of toxoplasmosis in a colony of woolly monkeys (Lagothrix lagotricha). J Zoo Wildl Med 37:276–280

    PubMed  Google Scholar 

  • Hegab SM, Al-Mutawa SA (2003) Immunopathogenesis of toxoplasmosis. Clin Exp Med 3:84–105

    CAS  PubMed  Google Scholar 

  • Hessler JR, Woodard JC, Tucek PC (1971) Lethal toxoplasmosis in a woolly monkey. J Am Vet Med Assoc 159:1588–1594

    CAS  PubMed  Google Scholar 

  • Hill WC (1960) Primates. Comparative anatomy and taxonomy IV. Cebidae Part A. University Press, Edinburgh, p xxii, 523

    Google Scholar 

  • Hill RD, Gouffon JS, Saxton AM, Su C (2011) Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun 80:968–974

    PubMed  Google Scholar 

  • Hutchison WM, Dunachie JF, Siim JC, Work K (1970) Coccidian-like nature of Toxoplasma gondii. Br Med J 1:142–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingberman B, Stone AI, Cheida CC (2008) Gênero Saimiri (Voigt 1831). In: Reis NR, Perachi AL, Andrade FR (eds) Primatas Brasileiros. Technical Books, Londrina, pp 41–46

    Google Scholar 

  • Innes EA (1997) Toxoplasmosis: comparative species susceptibility and host immune response. Comp Immunol Microbiol Infect Dis 20:131–138

    CAS  PubMed  Google Scholar 

  • Innes EA (2010) A brief history and overview of Toxoplasma gondii. Zoonoses Public Health 57:1–7

    CAS  PubMed  Google Scholar 

  • Izawa K (1978) Frog eating behavior of wild black-capped capuchin (Cebus apella). Primates 19:633–642

    Google Scholar 

  • Izawa K (1979) Foods and feeding behavior of wild black-capped capuchin (Cebus apella). Primates 20:57–76

    Google Scholar 

  • Jamieson SE, Peixoto-Rangel AL, Hargrave AC, de Roubaix LA, Mui EJ, Boulter NR, Miller EN, Fuller SJ, Wiley JS, Castellucci L, Boyer K, Peixe RG, Kirisits MJ, Elias LD, Coyne JJ, Correa-Oliveira R, Sautter M, Smith NC, Lees MP, Swisher CN, Heydemann P, Noble AG, Patel D, Bardo D, Burrowes D, McLone D, Roizen N, Withers S, Bahia-Oliveira LMG, McLeod R, Blackwell JM (2010) Evidence for associations between the purinergic receptor P2X(7) (P2RX7) and toxoplasmosis. Genes Immun 11:374–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson LL, Sayles PC (1997) Interleukin-12, dendritic cells, and the initiation of host-protective mechanisms against Toxoplasma gondii. J Exp Med 186:1799–1802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juan-Salles C, Prats N, Marco AJ, Ramos-Vara JA, Borras D, Fernandez J (1998) Fatal acute toxoplasmosis in three golden lion tamarins (Leontopithecus rosalia). J Zoo Wildl Med 29:55–60

    CAS  PubMed  Google Scholar 

  • Kierulff MCM, Raboy BE, Procopio de Oliveira P, Miller K, Passos FC, Prado F (2002) Behavioral ecology of lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Institution Press, Washington, pp 157–187

    Google Scholar 

  • Kinzey WG (1992) Dietary adaptations in the Pitheciinae. Am J Phys Anthropol 88:499–514

    CAS  PubMed  Google Scholar 

  • Klevar S (2007) Tissue cyst forming coccidia; Toxoplasma gondii and Neospora caninum as a cause of disease in farm animals. Acta Vet Scand 49:S1

    PubMed Central  Google Scholar 

  • Lang C, Gross U, Luder CG (2007) Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitol Res 100:191–203

    PubMed  Google Scholar 

  • Lees MP, Fuller SJ, McLeod R, Boulter NR, Miller CM, Zakrzewski AM, Mui EJ, Witola WH, Coyne JJ, Hargrave AC, Jamieson SE, Blackwell JM, Wiley JS, Smith NC (2010) P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages. J Immunol 184:7040–7046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leite TN, Maja Tde A, Ovando TM, Cantadori DT, Schimidt LR, Guercio AC, Cavalcanti A, Lopes FM, Da Cunha IA, Navarro IT (2008) Occurrence of infection Leishmania spp. and Toxoplasma gondii in monkeys (Cebus apella) from Campo Grande, MS. Rev Bras Parasitol Vet 17(Suppl 1):307–310

    PubMed  Google Scholar 

  • Luder CG, Stanway RR, Chaussepied M, Langsley G, Heussler VT (2009) Intracellular survival of apicomplexan parasites and host cell modification. Int J Parasitol 39:163–173

    PubMed  Google Scholar 

  • Machado FS, Aliberti J (2009) Lipoxins as an immune-escape mechanism. Adv Exp Med Biol 666:78–87

    CAS  PubMed  Google Scholar 

  • Malmasi A, Mosallanejad B, Mohebali M, Sharifian Fard M, Taheri M (2009) Prevention of shedding and re-shedding of Toxoplasma gondii oocysts in experimentally infected cats treated with oral Clindamycin: a preliminary study. Zoonoses Public Health 56:102–104

    CAS  PubMed  Google Scholar 

  • Marshall LG (1988) Land mammals and the Great American Interchange. Am Sci 76:380–388

    Google Scholar 

  • Mason NJ, Fiore J, Kobayashi T, Masek KS, Choi Y, Hunter CA (2004) TRAF6-dependent mitogen-activated protein kinase activation differentially regulates the production of interleukin-12 by macrophages in response to Toxoplasma gondii. Infect Immun 72:5662–5667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes SL, Silva MP, Strier KB (2010) O Muriqui. Vitória, ES, Brasil, Instituto de Pesquisas da Mata Atlântica-IPEMA. 95 p

    Google Scholar 

  • Miller CM, Zakrzewski AM, Ikin RJ, Boulter NR, Katrib M, Lees MP, Fuller SJ, Wiley JS, Smith NC (2011) Dysregulation of the inflammatory response to the parasite, Toxoplasma gondii, in P2X(7) receptor-deficient mice. Int J Parasitol 41:301–308

    CAS  PubMed  Google Scholar 

  • Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363:1965–1976

    CAS  PubMed  Google Scholar 

  • Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689

    CAS  PubMed  Google Scholar 

  • Nery-Guimaraes F, Franken AJ (1971) Toxoplasmosis in nonhuman primates. II. Attempts at experimental infection in Macacca mulata, Cebus apella and Callithrix jacchus; and search for antibodies in several species of platyrrhinus. Mem Inst Oswaldo Cruz 69:97–111

    CAS  PubMed  Google Scholar 

  • Nery-Guimaraes F, Franken AJ, Chagas WA (1971) Toxoplasmosis in nonhuman primates. I. Natural infection in Macacca mulata and Cebus apella. Mem Inst Oswaldo Cruz 69:77–87

    CAS  PubMed  Google Scholar 

  • Nicolle MC, Manceaux L (1909) On a new protozoan in gundis (Toxoplasma N. Gen). Arch Inst Pasteur Tunis 1:96–103

    Google Scholar 

  • Norconk MA, Wright BW, Conklin-Brittain NL, Vinyard CJ (2009) Mechanical and nutritional properties of food as factors in platyrrhine dietary adaptations. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American primates: comparative perspectives in the study of behavior, ecology and conservation. Developments in primatology: progress and prospect. Springer, New York, NY, pp 279–319

    Google Scholar 

  • Osborn KG, Lowenstine LJ (1998) Respiratory diseases. In: Bennett BT, Abee CR, Henrickson R (eds) Nonhuman primates in biomedical research. Academic, San Diego, CA, pp 263–309

    Google Scholar 

  • Oykhman P, Mody CH (2010) Direct microbicidal activity of cytotoxic T-lymphocytes. J Biomed Biotechnol 2010:249482

    PubMed Central  PubMed  Google Scholar 

  • Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pertz C, Dubielzig RR, Lindsay DS (1997) Fatal Toxoplasma gondii infection in golden lion tamarins (Leontopithecus rosalia rosalia). J Zoo Wildl Med 28:491–493

    CAS  PubMed  Google Scholar 

  • Pifer R, Yarovinsky F (2011) Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol 27:388–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Resende BD, Greco VLG, Otonni EB, Izar P (2003) Some observations on the predation of small mammals by tufted capuchin monkeys (Cebus apella). Neotrop Primates 11:103–104

    Google Scholar 

  • Rickli RI, Reis NR (2008) Gênero Cacajao Lesson 1840. In: Reis NR, Perachi AL, Andrade FR (eds) Primatas brasileiros. Technical Books, Londrina, pp 147–151

    Google Scholar 

  • Robinson JG (1984) Diurnal variation in foraging and diet in the wedge-capped capuchin Cebus olivaceus. Folia Primatol 43:216–228

    Google Scholar 

  • Rose L (1997) Vertebrate predation and food-sharing in Cebus and Pan. Int J Primatol 18:727–765

    Google Scholar 

  • Rosenberger AL, Matthews LJ (2008) Oreonax-not a genus. Neotrop Primates 15:8–12

    Google Scholar 

  • Rylands AB, Mittermeier RA (2009) The diversity of the New World primates (Platyrrhini): an annotated taxonomy. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American primates: comparative perspectives in the study of behavior, ecology and conservation. Developments in primatology: progress and prospects. Springer, New York, NY, pp 23–54

    Google Scholar 

  • Rylands AB, Kierulff MCM, Mittermeier RA (2005) Notes on the taxonomy and distributions of the tufted capuchin monkeys (Cebus, Cebidae) of South America. Lundiana 6:97–110

    Google Scholar 

  • Saeij JP, Boyle JP, Boothroyd JC (2005) Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol 21:476–481

    PubMed  Google Scholar 

  • Salant H, Weingram T, Spira DT, Eizenberg T (2009) An outbreak of toxoplasmosis amongst squirrel monkeys in an Israeli monkey colony. Vet Parasitol 159:24–29

    CAS  PubMed  Google Scholar 

  • Sampaio DT, Ferrari SF (2005) Predation of an infant titi monkey (Callicebus moloch) by a tufted capuchin (Cebus apella). Folia Primatol 76:113–115

    PubMed  Google Scholar 

  • Santos TA, Portes Jde A, Damasceno-Sa JC, Caldas LA, Souza W, Damatta RA, Seabra SH (2011) Phosphatidylserine exposure by Toxoplasma gondii is fundamental to balance the immune response granting survival of the parasite and of the host. PLoS One 6:e27867

    PubMed Central  PubMed  Google Scholar 

  • Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, Medzhitov R, Sher A (2002) Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168:5997–6001

    CAS  PubMed  Google Scholar 

  • Seed JR (1996) Protozoa: pathogenesis and defenses. In: Baron S (ed) Medical microbiology. University of Texas Medical Branch at Galveston, Galveston, TX

    Google Scholar 

  • Sharma SD (1990) Immunology of toxoplasmosis. In: Wyler DJ (ed) Modern parasite biology: cellular, immunological and molecular aspects. W.H. Freeman and Company, New York, NY, pp 184–199

    Google Scholar 

  • Sibley LD, Khan A, Ajioka JW, Rosenthal BM (2009) Genetic diversity of Toxoplasma gondii in animals and humans. Philos Trans R Soc Lond B Biol Sci 364:2749–2761

    PubMed Central  PubMed  Google Scholar 

  • Silva JCR (2007) Toxoplasmose. In: Cubas ZS, Silva JCR, Catão-Dias JL (eds) Tratado de animais selvagens: medicina veterinária. Editora Roca, São Paulo, pp 768–784

    Google Scholar 

  • Silva JS Jr (2001) Especiação nos macacos-prego e caiararas, gênero Cebus Erxleben, 1777 (Primates, Cebidae). Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Simpson GG (1980) Splendid isolation: the curious history of South American mammals. Yale University, New Haven, CT

    Google Scholar 

  • Snowdon CT, Soini P (1988) The tamarins, genus Saguinus. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, Fonseca GAB (eds) Ecology and behavior of neotropical primates. World Wildlife Fund, Washington, DC, pp 223–298

    Google Scholar 

  • Sogorb S F, Jamra LF, Guimaraes EC, Deane MP (1972) Toxoplasmose espontanea em animais domesticos e silvestres, em Sao Paulo. Revista. Inst Med trop S Paulo 14: 314–320

    Google Scholar 

  • Soini P (1988) The pygmy marmoset, genus Cebuella. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, Fonseca GAB (eds) Ecology and behavior of neotropical primates. World Wildlife Fund, Washington, DC, pp 79–129

    Google Scholar 

  • Splendore A (1909) A new protozoan parasite of rabbit found in histological lesions similar to human Kala-Azar. Rev Soc Sci S Paulo 3:109–112

    Google Scholar 

  • Stuart M, Pendergast V, Rumfelt S, Pierberg S, Greenspan L, Glander K, Clarke M (1998) Parasites of wild howlers (Alouatta spp.). Int J Primatol 19:493–512

    Google Scholar 

  • Subauste CS (2009) CD40, autophagy and Toxoplasma gondii. Mem Inst Oswaldo Cruz 104:267–272

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Orellana MA, Schreiber RD, Remington JS (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240:516–518

    CAS  PubMed  Google Scholar 

  • Tait ED, Hunter CA (2009) Advances in understanding immunity to Toxoplasma gondii. Mem Inst Oswaldo Cruz 104:201–210

    CAS  PubMed  Google Scholar 

  • Terborgh J (1983) Five New world primates. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Van Roosmalen MGM, Van Roosmalen T (2003) The description of a new marmoset genus, Callibella (Callitrichinae, Primates), including its molecular phylogenetic status. Neotrop Primates 11:1–10

    Google Scholar 

  • Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, de Sauvage FJ, Hunter CA (2006) IL-27 limits IL-2 production during Th1 differentiation. J Immunol 176:237–247

    CAS  PubMed  Google Scholar 

  • Vouldoukis I, Mazier D, Moynet D, Thiolat D, Malvy D, Mossalayi MD (2011) IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS One 6:e18289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb SD (1976) Mammalian faunal dynamics of the Great American Interchange. Paleobiology 2:220–234

    Google Scholar 

  • Werner H, Janitschke K, Kijhler H (1969) Uber Beobachtungen an Marmoset-Affen Saguinus (Oedipomidas) Oedipus nach oraler und intraperitonealer infektion mit verschiedenen en zystenbildenden Toxoplasma-Stgmmen unterschiedlicher Virulenz. I. Mitteilung: Klinische, pathologisch-anatomische, histologische und parasitologische zentralblatt Bakteriologie Befunde. Parasitenkunde fir Infektionskrankheiten und Hygiene 209:553–569

    CAS  Google Scholar 

  • Wright PC (1981) The night monkeys, genus Aotus. In: Coimbra-Filho AF, Mittermeir RA (eds) Ecology and behavior of neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 211–240

    Google Scholar 

  • Yarovinsky F, Zhang DK, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629

    CAS  PubMed  Google Scholar 

  • Zanon CMV, Reis NR, Filho HO (2008) Gênero Ateles E.Geoffroy 1806. In: Reis NR, Perachi AL, Andrade FR (eds) Primatas brasileiros. Technical Books, Londrina, pp 169–173

    Google Scholar 

Download references

Acknowledgments

We are grateful to the staff at LAPCOM–FMVZ/USP, UNIFESP, and UFES; without their efforts, this chapter would not have been possible. In particular, we would like to acknowledge the continuous financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). José Luiz Catão-Dias is a recipient of a scholarship by the CNPq (301517/2006-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz Catão-Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Catão-Dias, J.L., Epiphanio, S., Kierulff, M.C.M. (2013). Neotropical Primates and Their Susceptibility to Toxoplasma gondii: New Insights for an Old Problem. In: Brinkworth, J., Pechenkina, K. (eds) Primates, Pathogens, and Evolution. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7181-3_9

Download citation

Publish with us

Policies and ethics