Skip to main content

Mechanisms of Resistance to Targeted B-Raf Therapies

  • Chapter
  • First Online:
  • 1797 Accesses

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

Abstract

Targeted Cancer Therapies and Resistance Our modern search for effective cancer therapies began after the First World War and the discovery of the myelosuppressive properties of nitrogen mustards. Since that time, adjuvant and chemo-radiotherapy have become the standard of care for many cancers. These non-targeted therapies have produced remissions in many patients. As our technical capacity to target radiation to tumors and our ability to perform surgical interventions improves, it is likely that these approaches will gain in effectiveness. Nevertheless, the dose limiting toxicities of chemotherapy drugs and ionizing radiation have served to expose vulnerabilities in this clinical approach. Modern translational research has sought to develop novel, targeted approaches to cancer therapy. These new approaches are based upon our understanding of cellular growth control, and bring with them the promise of greater potency and safety. The concept of targeted cancer therapy began with the identification and characterization of growth regulatory proteins in normal cells. These proteins were initially identified in acute transforming retroviruses. During the 1970s and 1980s, investigators working in a number of laboratories learned that the transforming genes of these viruses were actually derived from the host genome. In subsequent years, investigators came to understand that biochemical or genetic inactivation of these deleterious proteins in cultured cell lines leads to tumor cell death. This new understanding led to the search for specific proteins, whose activities drive the malignant transformation process. These proteins are now referred to as druggable targets. Chemical and molecular biologists are translating their understanding of the cell proliferation control into molecular therapeutics directed at these targets. Targeted therapy development for cancer is still in its infancy. Despite this, clinical trials for a number of small molecules have provided positive outcomes in patients who may have been given dire prognoses only a few years ago. Two FDA-approved drugs, Gleevec (Novartis) and Vemurafinib (Plexxikon) have provided some of the most dramatic results. Unfortunately, these drugs have also revealed a new challenge in cancer therapy—the development of resistance and relapse. Here, we describe the B-raf growth signaling pathway associated with the development of melanoma, summarize the mechanisms associated with resistance to targeted B-raf therapies, and discuss the future of this field of inquiry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BCR:

Breakpoint cluster region

CML:

Chronic myelogenous leukemia

Src:

The transforming gene of the Rous Sarcoma Virus (RSV), a non-receptor tyrosine kinase that represents a family of such kinases that regulate cell proliferation and play a prominent role in malignant transformation

Abl:

The transforming gene of Abelson Murine Leukemia Virus (A-MuLV). Abl is a src family kinase associated with transformation of the lymphoid compartment of the hematopoietic system

MAP:

Originally microtubule-associated protein, now also mitogen-activated protein. MAP kinases refer to a group of cytoplasmic protein kinases that act downstream of growth factor receptors to transmit proliferative signals to cells

FTI:

Farnesyl transferase inhibitor

JNK:

c-Jun N terminal kinase

PI-3K:

Phosphatidyl inositol 3′ kinase

MEK:

Mitogen activated/extracellular regulatory kinase

ERK:

Extracellular regulatory kinase

References

  1. Nordling CO. A new theory on cancer-inducing mechanism. Br J Cancer. 1953;7:68–72.

    Article  PubMed  CAS  Google Scholar 

  2. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.

    Article  PubMed  Google Scholar 

  3. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  PubMed  CAS  Google Scholar 

  4. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature. 1985;315:758–61.

    Article  PubMed  CAS  Google Scholar 

  5. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    Article  PubMed  CAS  Google Scholar 

  6. Hehlmann R, Current CML. Therapy: progress and dilemma. Leukemia. 2003;17:1010–2.

    Article  PubMed  CAS  Google Scholar 

  7. Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene. 2003;22:7389–95.

    Article  PubMed  CAS  Google Scholar 

  8. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26:1131–55.

    Article  PubMed  CAS  Google Scholar 

  9. Bar-Sagi D. A Ras by any other name. Mol Cell Biol. 2001;21:1441–3.

    Article  PubMed  CAS  Google Scholar 

  10. Weber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR, Block C. Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene. 2000;19:169–76.

    Article  PubMed  CAS  Google Scholar 

  11. Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1964;204:1104–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kirsten WH, Mayer LA. Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst. 1967;39:311–35.

    PubMed  CAS  Google Scholar 

  13. Peters RL, Rabstein LS, Louise S, Van Vleck R, Kelloff GJ, Huebner RJ. Naturally occurring sarcoma virus of the BALB/cCr mouse. J Natl Cancer Inst. 1974;53:1725–9.

    PubMed  CAS  Google Scholar 

  14. Dhar R, Ellis RW, Shih TY, Oroszlan S, Shapiro B, Maizel J, Lowy D, Scolnick E. Nucleotide sequence of the p21 transforming protein of Harvey murine sarcoma virus. Science. 1982;217:934–6.

    Article  PubMed  CAS  Google Scholar 

  15. Tsuchida N, Ryder T, Ohtsubo E. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science. 1982;217:937–8.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy EP, Lipman D, Anderson PR, Tronick SR, Aaronson SA. Nucleotide sequence analysis of BALB/c murine sarcoma virus transforming gene. J Virol. 1985;53:984–7.

    PubMed  CAS  Google Scholar 

  17. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  PubMed  CAS  Google Scholar 

  18. Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature (London). 1982;300:149–52.

    Article  CAS  Google Scholar 

  19. Reddy EP. Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene. Science. 1983;220:1061–3.

    Article  PubMed  CAS  Google Scholar 

  20. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH. Mechanism of activation of a human oncogene. Nature (London). 1982;300:143–9.

    Article  CAS  Google Scholar 

  21. Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature (London). 1982;300:762–5.

    Article  CAS  Google Scholar 

  22. Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA. Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature (London). 1983;303:775–9.

    Article  CAS  Google Scholar 

  23. Taparowsky E, Shimizu K, Goldfarb M, Wigler M. Structure and activation of the human N-ras gene. Cell. 1983;34:581–6.

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu K, Birnbaum D, Ruley MA, Fasano O, Suard Y, Edlund L, Taparowsky E, Goldfarb M, Wigler M. Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Nature (London). 1983;304:497–500.

    Article  CAS  Google Scholar 

  25. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–27.

    Article  PubMed  CAS  Google Scholar 

  26. Cox AD, Der CJ. Ras family signaling: therapeutic targeting. Cancer Biol Ther. 2002;1:599–606.

    PubMed  CAS  Google Scholar 

  27. Downward J, Targeting RAS. signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  PubMed  CAS  Google Scholar 

  28. Sebti SM, Hamilton AD. Design of growth factor antagonists with antiangiogenic and antitumor properties. Oncogene. 2000;19:6566–73.

    Article  PubMed  CAS  Google Scholar 

  29. Cox AD, Der CJ. Farnesyltransferase inhibitors: promises and realities. Curr Opin Pharmacol. 2002;2:388–93.

    Article  PubMed  CAS  Google Scholar 

  30. Rossi ED, Martini M, Capodimonti S, Lombardi CP, Pontecorvi A, Vellone VG, Zannoni GF, Larocca LM, Fadda G. BRAF (V600E) mutation analysis on liquid-based cytology-processed aspiration biopsies predicts bilaterality and lymph node involvement in papillary thyroid microcarcinoma. Cancer Cytopathol. 2012; Nov 28. doi:10.1002/cncy.21258.

  31. Bösmüller H, Fischer A, Pham DL, Fehm T, Capper D, von Deimling A, Bonzheim I, Staebler A, Fend F. Detection of the BRAF V600E mutation in serous ovarian tumors: a comparative analysis of immunohistochemistry with a mutation-specific monoclonal antibody and allele-specific PCR. Hum Pathol. 2012; Oct 19. pii:S0046-8177(12)00266-3. doi:10.1016/j.humpath.2012.07.010.

  32. Popovici V, Budinska E, Tejpar S, Weinrich S, Estrella H, Hodgson G, Van Cutsem E, Xie T, Bosman FT, Roth AD, Delorenzi M. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol. 2012;30:1288–95.

    Article  PubMed  CAS  Google Scholar 

  33. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH Jr, Stephenson JR. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A. 1983;80:4218–4222.

    Google Scholar 

  34. Schreck R, Rapp UR. Raf kinases: oncogenesis and drug discovery. Int J Cancer. 2006;119:2261–71.

    Article  PubMed  CAS  Google Scholar 

  35. Jansen HW, Patschinsky T, Bister K. Avian oncovirus MH2: molecular cloning of proviral DNA and structural analysis of viral RNA and protein. J Virol. 1983;48:61–73.

    PubMed  CAS  Google Scholar 

  36. Sutrave P, Bonner TI, Rapp UR, Jansen HW, Patschinsky T, Bister K. Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature. 1984;309:85–8.

    Article  PubMed  CAS  Google Scholar 

  37. Moelling K, Heimann B, Rapp UR, Sander T. Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature. 1984;312:558–61.

    Article  PubMed  CAS  Google Scholar 

  38. Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G, Rapp UR. Structure and biological activity of human homologs of the raf/mil oncogene. Mol Cell Biol. 1985;5:1400–7.

    PubMed  CAS  Google Scholar 

  39. Mark GE, MacIntyre RJ, Digan ME, Ambrosio L, Perrimon N. Drosophila melanogaster homologs of the raf oncogene. Mol Cell Biol. 1987;7:2134–40.

    PubMed  CAS  Google Scholar 

  40. Han M, Golden A, Han Y, Sternberg PW. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature. 1993;363:133–40.

    Article  PubMed  CAS  Google Scholar 

  41. Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR. The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res. 1987;15:595–609.

    Article  PubMed  CAS  Google Scholar 

  42. Marx M, Eychène A, Laugier D, Béchade C, Crisanti P, Dezélée P, Pessac B, Calothy G. A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. EMBO J. 1988;7:3369–73.

    PubMed  CAS  Google Scholar 

  43. Barnier JV, Papin C, Eychène A, Lecoq O, Calothy G. The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem. 1995;270:23381–9.

    Article  PubMed  CAS  Google Scholar 

  44. Storm SM, Cleveland JL, Rapp UR. Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene. 1990;5:345–51.

    PubMed  CAS  Google Scholar 

  45. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    Article  PubMed  CAS  Google Scholar 

  46. Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol. 1988;8:2651–2564.

    PubMed  CAS  Google Scholar 

  47. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Futreal PA. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  48. Dhillon AS, Kolch W. Oncogenic B-Raf mutations: crystal clear at last. Cancer Cell. 2004;5:303–4.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang BH, Guan KL. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 2000;19:5429–39.

    Article  PubMed  CAS  Google Scholar 

  50. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM. Meltzer PS High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    Article  PubMed  CAS  Google Scholar 

  51. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  PubMed  CAS  Google Scholar 

  52. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  PubMed  CAS  Google Scholar 

  53. Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A, Basolo F. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  PubMed  CAS  Google Scholar 

  54. Kobayashi M, Sonobe M, Takahashi T, Yoshizawa A, Ishikawa M, Kikuchi R, Okubo K, Huang CL, Date H. Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res. 2011;31:4619–23.

    PubMed  CAS  Google Scholar 

  55. Li WQ, Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Iacopetta B. BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol Cancer. 2006;5:2–8.

    Article  PubMed  Google Scholar 

  56. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, Sportoletti P, Pettirossi V, Mannucci R, Elliott O, Liso A, Ambrosetti A, Pulsoni A, Forconi F, Trentin L, Semenzato G, Inghirami G, Capponi M, Di Raimondo F, Patti C, Arcaini L, Musto P, Pileri S, Haferlach C, Schnittger S, Pizzolo G, Foà R, Farinelli L, Haferlach T, Pasqualucci L, Rabadan R, Falini B. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364:2305–15.

    Article  PubMed  CAS  Google Scholar 

  57. Dumas J, Smith RA, Lowinger TB. Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr Opin Drug Discov Devel. 2004;7:600–16.

    PubMed  CAS  Google Scholar 

  58. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  PubMed  CAS  Google Scholar 

  59. Adnane L, Trail PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 2006;407:597–612.

    Article  PubMed  CAS  Google Scholar 

  60. Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene. 2005;24:6861–9.

    Article  PubMed  CAS  Google Scholar 

  61. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P, Eggermont A, Grabbe S, Gonzalez R, Gille J, Peschel C, Schadendorf D, Garbe C, O’Day S, Daud A, White JM, Xia C, Patel K, Kirkwood JM, Keilholz U. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27:2823–30.

    Article  PubMed  CAS  Google Scholar 

  62. Shepherd C, Puzanov I, Sosman JA. B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep. 2010;12:146–52.

    Article  PubMed  CAS  Google Scholar 

  63. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A. 2008;105:3041–6.

    Article  PubMed  CAS  Google Scholar 

  64. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  PubMed  CAS  Google Scholar 

  65. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  PubMed  CAS  Google Scholar 

  66. Kim T, Kim J, Lee MG. Inhibition of mutated BRAF in melanoma. N Engl J Med. 2010;363:2261–2.

    Article  PubMed  CAS  Google Scholar 

  67. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.

    Article  PubMed  CAS  Google Scholar 

  68. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68:4853–61.

    Article  PubMed  CAS  Google Scholar 

  69. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  PubMed  CAS  Google Scholar 

  70. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, Caponigro G, Hieronymus H, Murray RR, Salehi-Ashtiani K, Hill DE, Vidal M, Zhao JJ, Yang X, Alkan O, Kim S, Harris JL, Wilson CJ, Myer VE, Finan PM, Root DE, Roberts TM, Golub T, Flaherty KT, Dummer R, Weber BL, Sellers WR, Schlegel R, Wargo JA, Hahn WC, Garraway LA. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–72.

    Article  PubMed  CAS  Google Scholar 

  71. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D’Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M. Acquired resistanceto BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18:683–95.

    Article  PubMed  CAS  Google Scholar 

  72. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, Wood E, Fedorenko IV, Sondak VK, Anderson AR, Ribas A, Palma MD, Nathanson KL, Koomen JM, Messina JL, Smalley KS. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71:2750–60.

    Article  PubMed  CAS  Google Scholar 

  73. Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol. 2011;82:201–9.

    Article  PubMed  CAS  Google Scholar 

  74. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    Article  PubMed  CAS  Google Scholar 

  75. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB. RAF inhibitor resistance is mediated by dimerization of aberrantly splice BRAF(V600E). Nature. 2011;480:387–90.

    Article  PubMed  CAS  Google Scholar 

  76. Kaplan FM, Mastrangelo MJ, Aplin AE. The wrath of RAFs: rogue behavior of B-RAF kinase inhibitors. J Invest Dermatol. 2010;130:2669–71.

    Article  PubMed  CAS  Google Scholar 

  77. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.

    Article  PubMed  CAS  Google Scholar 

  78. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, Hatton C, Chopra R, Oberholzer PA, Karpova MB, MacConaill LE, Zhang J, Gray NS, Sellers WR, Dummer R, Garraway LA. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 2009;106:20411–6.

    Article  PubMed  CAS  Google Scholar 

  79. Infante JR, Falchook GS, Lawrence DP, Weber JS, Kefford RF, Bendell JC, Kurzrock R, Shapiro G, Kudchadkar RR, Long GV, Burris HA, Kim KB, Clements A, Peng S, Yi B, Allred AJ, Ouellet D, Patel K, Lebowitz PF, Flaherty KT. Phase I/II study of the oral MEK1/2 inhibitor GSK1120212 dosed in combination with the oral BRAF inhibitor GSK2118436. J Clin Oncol. 2011;29 18S:CRA8503.

    Google Scholar 

  80. Smalley KSM, McArthur GA. The current state of targeted therapy in melanoma: this time it’s personal. Semin Oncol. 2012;39:204–14.

    Article  PubMed  CAS  Google Scholar 

  81. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80.

    Article  PubMed  CAS  Google Scholar 

Download references

No Conflict Statement

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Premkumar Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tantravahi, R.V., Hoffman, B., Premkumar Reddy, E. (2013). Mechanisms of Resistance to Targeted B-Raf Therapies. In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_4

Download citation

Publish with us

Policies and ethics