Skip to main content

Collateral Sensitivity in Drug-Resistant Tumor Cells

  • Chapter
  • First Online:

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

Abstract

Collateral sensitivity is a term for the hypersensitivity of otherwise drug-resistant cells. The selective killing of tumor cells by drugs exerting collateral sensitivity might be used as a novel treatment strategy. In this chapter, we give an overview on drug resistance phenotypes with known collateral sensitivities; furthermore, their molecular and cellular mechanisms were discussed to explain mediation of these hypersensitivities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC transporter:

ATP-binding cassette transporter

P-gp:

P-glycoprotein

References

  1. Hutchinson DJ. Cross resistance and collateral sensitivity studies in cancer chemotherapy. Adv Cancer Res. 1963;7:235–50.

    Google Scholar 

  2. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427.

    PubMed  CAS  Google Scholar 

  3. Rautio J, Humphreys JE, Webster LO. In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos. 2006;34:786–92.

    PubMed  CAS  Google Scholar 

  4. Ayesh S, Shao YM, Stein WD. Co-operative, competitive and non-competitive interactions between modulators of Pglycoprotein. Biochim Biophys Acta. 1996;1316:8–18.

    PubMed  Google Scholar 

  5. Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271:3163–71.

    PubMed  CAS  Google Scholar 

  6. Safa AR. Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents. 2004;4:1–17.

    PubMed  CAS  Google Scholar 

  7. Globisch C, Pajeva IK, Wiese M. Identification of putative binding sites of P-glycoprotein based on its homology model. Chem Med Chem. 2008;3:280–95.

    PubMed  CAS  Google Scholar 

  8. Shapiro AB, Ling V. Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur J Biochem. 1997;250:122–9.

    PubMed  CAS  Google Scholar 

  9. Efferth T. The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr Mol Med. 2001;1:45–65.

    PubMed  CAS  Google Scholar 

  10. Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 2007;1775:237–62.

    PubMed  CAS  Google Scholar 

  11. Danks MK, Yalowich JC, Beck WT. Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 1987;47:1297–301.

    PubMed  CAS  Google Scholar 

  12. Haber M, Norris MD, Kavallaris M, Bell DR, Davey RA, White L, Stewart BW. Atypical multidrug resistance in a therapy-induced drug-resistant human leukemia cell line (LALW-2): resistance to Vinca alkaloids independent of P-glycoprotein. Cancer Res. 1989;49:5281–7.

    PubMed  CAS  Google Scholar 

  13. Volm M, Efferth T. Overcoming resistance in tumors. Dtsch Med Wochenschr. 1994;119:475–9.

    PubMed  CAS  Google Scholar 

  14. Efferth T, Grassmann R. Impact of viral oncogenesis on responses to anti-cancer drugs and irradiation. Crit Rev Oncog. 2000;11:165–87.

    PubMed  CAS  Google Scholar 

  15. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990;42:155–99.

    PubMed  CAS  Google Scholar 

  16. Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol. 2012;141:557–70.

    PubMed  CAS  Google Scholar 

  17. Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12:570–94.

    PubMed  CAS  Google Scholar 

  18. Efferth T, Osieka R. Clinical relevance of the MDR-1 gene and its gene-product, P-glycoprotein, for cancer chemotherapy: a meta-analysis. Tumordiagn Ther. 1993;14:238–43.

    Google Scholar 

  19. Tamaki A, Ierano C, Szakacs G, Robey RW, Bates SE. The controversial role of ABC transporters in clinical oncology. Essays Biochem. 2011;50:209–32.

    PubMed  CAS  Google Scholar 

  20. Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT, Bates SE. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat. 2012;15:50–61.

    PubMed  CAS  Google Scholar 

  21. Sybalski W, Bryson V. Genetic studies on microbial cross resistance to toxic agents: I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol. 1952;64:489–99.

    Google Scholar 

  22. Rank GH, Robertson AJ, Phillips KL. Modification and inheritance of pleiotropic cross resistance and collateral sensitivity in Saccharomyces cerevisiae. Genetics. 1975;80:783–93.

    Google Scholar 

  23. Bech-Hansen NT, Till JE, Ling V. Pleiotropic phenotype of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J Cell Physiol. 1976;88:23–31.

    PubMed  CAS  Google Scholar 

  24. Hall MD, Salam NK, Hellawell JL, Fales HM, Kensler CB, Ludwig JA, Szakács G, Hibbs DE, Gottesman MM. Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells. J Med Chem. 2009;52:3191–204.

    PubMed  CAS  Google Scholar 

  25. Pluchino KM, Hall MD, Goldsborough AS, Callaghan R, Gottesman MM. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist Updat. 2012;15:98–105.

    PubMed  CAS  Google Scholar 

  26. Kaelin WG. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.

    PubMed  CAS  Google Scholar 

  27. Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov. 2011;10:351–64.

    PubMed  CAS  Google Scholar 

  28. Laberge RM, Ambadipudi R, Georges E. P-glycoprotein (ABCB1) modulates collateral sensitivity of a multidrug resistant cell line to verapamil. Arch Biochem Biophys. 2009;491:53–60.

    PubMed  CAS  Google Scholar 

  29. Gottesman MM, Ambudkar SV, Xia D. Structure of a multidrug transporter. Nat Biotechnol. 2009;27:546–7.

    PubMed  CAS  Google Scholar 

  30. Broxterman HJ, Pinedo HM, Kuiper CM, Kaptein LC, Schuurhuis GJ, Lankelma J. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 1988;2:2278–82.

    PubMed  CAS  Google Scholar 

  31. Broxterman HJ, Pinedo HM, Kuiper CM, Schuurhuis GJ, Lankelma J. Glycolysis in P-glycoprotein-overexpressing human tumor cell lines. Effects of resistance-modifying agents. FEBS Lett. 1989;247:405–10.

    PubMed  CAS  Google Scholar 

  32. Karwatsky J, Lincoln MC, Georges E. A mechanism for P-glycoprotein-mediated apoptosis as revealed by verapamil hypersensitivity. Biochemistry. 2003;42:12163–73.

    PubMed  CAS  Google Scholar 

  33. Trompier D, Chang XB, Barattin R, du Moulinet D’Hardemare A, Di Pietro A, Baubichon-Cortay H. Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Res. 2004;64:4950–4956.

    Google Scholar 

  34. Rothnie A, Conseil G, Lau AY, Deeley RG, Cole SP. Mechanistic differences between GSH transport by multidrug resistance protein 1 (MRP1/ABCC1) and GSH modulation of MRP1-mediated transport. Mol Pharmacol. 2008;74:1630–40.

    PubMed  CAS  Google Scholar 

  35. Laberge RM, Karwatsky J, Lincoln MC, Leimanis ML, Georges E. Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress. Biochem Pharmacol. 2007;73:1727–37.

    PubMed  CAS  Google Scholar 

  36. Bell SE, Quinn DM, Kellett GL, Warr JR. 2-Deoxy-d-glucose preferentially kills multidrug-resistant human KB carcinoma cell lines by apoptosis. Br J Cancer. 1998;78:1464–70.

    PubMed  CAS  Google Scholar 

  37. Kaplan O, Jaroszewski JW, Clarke R, Fairchild CR, Schoenlein P, Goldenberg S, Gottesman MM, Cohen JS. The multidrug resistance phenotype: 31P nuclear magnetic resonance characterization and 2-deoxyglucose toxicity. Cancer Res. 1991;51:1638–44.

    PubMed  CAS  Google Scholar 

  38. Bentley J, Quinn DM, Pitman RS, Warr JR, Kellett GL. The human KB multidrug-resistant cell line KB-C1 is hypersensitive to inhibitors of glycosylation. Cancer Lett. 1997;115:221–7.

    PubMed  CAS  Google Scholar 

  39. Ramu A, Glaubiger D, Magrath IT, Joshi A. Plasma membrane lipid structural order in doxorubicin-sensitive and -resistant P388 cells. Cancer Res. 1983;43:5533–7.

    PubMed  CAS  Google Scholar 

  40. Callaghan R, Riordan JR. Collateral sensitivity of multidrug resistant cells to narcotic analgesics is due to effects on the plasma membrane. Biochim Biophys Acta. 1995;1236:155–62.

    PubMed  Google Scholar 

  41. Alemán C, Annereau JP, Liang XJ, Cardarelli CO, Taylor B, Yin JJ, Aszalos A, Gottesman MM. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res. 2003;63:3084–91.

    PubMed  Google Scholar 

  42. Futscher BW, Campbell K, Dalton WS. Collateral sensitivity to nitrosoureas in multidrug-resistant cells selected with verapamil. Cancer Res. 1992;52:5013–7.

    PubMed  CAS  Google Scholar 

  43. Sosinski J, Thakar JH, Germain GS, Dias P, Harwood FC, Kuttesch JF, Houghton PJ. Cross-resistance to antitumor diarylsulfonylureas and collateral sensitivity to mitochondrial toxins in a human cell line selected for resistance to the antitumor agent N-(5-indanylsulfonyl)-N’-(4-chlorophenyl)urea. Mol Pharmacol. 1994;45:962–70.

    PubMed  CAS  Google Scholar 

  44. Friedman HS, Dolan ME, Kaufmann SH, Colvin OM, Griffith OW, Moschel RC, Schold SC, Bigner DD, Ali-Osman F. Elevated DNA polymerase alpha, DNA polymerase beta, and DNA topoisomerase II in a melphalan-resistant rhabdomyosarcoma xenograft that is cross-resistant to nitrosoureas and topotecan. Cancer Res. 1994;54:3487–93.

    PubMed  CAS  Google Scholar 

  45. Davies SL, Bergh J, Harris AL, Hickson ID. Response to ICRF-159 in cell lines resistant to cleavable complex-forming topoisomerase II inhibitors. Br J Cancer. 1997;75:816–21.

    PubMed  CAS  Google Scholar 

  46. Matsuo K, Kiura K, Ueoka H, Tabata M, Shibayama T, Matsumura T, Takigawa N, Hiraki S, Harada M. Growth inhibitory effects of antifolates against an adriamycin-resistant human small cell lung cancer cell line. Acta Med Okayama. 1997;51:121–127. Erratum in: Acta Med Okayama. 1997;51:237.

    Google Scholar 

  47. Fukuoka K, Yamagishi T, Ichihara T, Nakaike S, Iguchi K, Yamada Y, Fukumoto H, Yoneda T, Samata K, Ikeya H, Nanaumi K, Hirayama N, Narita N, Saijo N, Nishio K. Mechanism of action of aragusterol a (YTA0040), a potent anti-tumor marine steroid targeting the G(1) phase of the cell cycle. Int J Cancer. 2000;88:810–9.

    PubMed  CAS  Google Scholar 

  48. Bergman AM, Munch-Petersen B, Jensen PB, Sehested M, Veerman G, Voorn DA, Smid K, Pinedo HM, Peters GJ. Collateral sensitivity to gemcitabine (2’,2’-difluorodeoxycytidine) and cytosine arabinoside of daunorubicin- and VM-26-resistant variants of human small cell lung cancer cell lines. Biochem Pharmacol. 2001;61:1401–8.

    PubMed  CAS  Google Scholar 

  49. Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt CL, Peters GJ. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88:1963–70.

    PubMed  CAS  Google Scholar 

  50. Wu CP, Shukla S, Calcagno AM, Hall MD, Gottesman MM, Ambudkar SV. Evidence for dual mode of action of a thiosemicarbazone, NSC73306: a potent substrate of the multidrug resistance linked ABCG2 transporter. Mol Cancer Ther. 2007;6:3287–96.

    PubMed  CAS  Google Scholar 

  51. Bosanquet AG, Bell PB. Enhanced ex vivo drug sensitivity testing of chronic lymphocytic leukaemia using refined DiSC assay methodology. Leuk Res. 1996;20:143–53.

    PubMed  CAS  Google Scholar 

  52. Goldsborough AS, Handley MD, Dulcey AE, Pluchino KM, Kannan P, Brimacombe KR, Hall MD, Griffiths G, Gottesman MM. Collateral sensitivity of multidrug-resistant cells to the orphan drug tiopronin. J Med Chem. 2011;54:4987–97.

    PubMed  CAS  Google Scholar 

  53. Ling V, Kartner N, Sudo T, Siminovitch L, Riordan JR. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat Rep. 1983;67:869–74.

    PubMed  CAS  Google Scholar 

  54. Dalton WS, Durie BG, Alberts DS, Gerlach JH, Cress AE. Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res. 1986;46:5125–30.

    PubMed  CAS  Google Scholar 

  55. Mirski SE, Gerlach JH, Cole SP. Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res. 1987;47:2594–8.

    PubMed  CAS  Google Scholar 

  56. Volm M, Efferth T, Günther A, Lathan B. Detection of murine S180 cells expressing a multidrug resistance phenotype using different in vitro test systems and a monoclonal antibody. Arzneimittelforschung. 1987;37:862–7.

    PubMed  CAS  Google Scholar 

  57. Diddens H, Gekeler V, Neumann M, Niethammer D. Characterization of actinomycin-D-resistant CHO cell lines exhibiting a multidrug-resistance phenotype and amplified DNA sequences. Int J Cancer. 1987;40:635–42.

    PubMed  CAS  Google Scholar 

  58. Lock RB, Hill BT. Differential patterns of anti-tumour drug responses and mechanisms of resistance in a series of independently-derived VP-16-resistant human tumour cell lines. Int J Cancer. 1988;42:373–81.

    PubMed  CAS  Google Scholar 

  59. Cole SP, Downes HF, Slovak ML. Effect of calcium antagonists on the chemosensitivity of two multidrug-resistant human tumour cell lines which do not overexpress P-glycoprotein. Br J Cancer. 1989;59:42–6.

    PubMed  CAS  Google Scholar 

  60. Harker WG, Slade DL, Dalton WS, Meltzer PS, Trent JM. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res. 1989;49:4542–9.

    PubMed  CAS  Google Scholar 

  61. Wang YY, Teicher BA, Shea TC, Holden SA, Rosbe KW. al-Achi A, Henner WD. Cross-resistance and glutathione-S-transferase-pi levels among four human melanoma cell lines selected for alkylating agent resistance. Cancer Res. 1989;49:6185–92.

    PubMed  CAS  Google Scholar 

  62. Oguro M, Seki Y, Okada K, Andoh T. Collateral drug sensitivity induced in CPT-11 (a novel derivative of camptothecin)-resistant cell lines. Biomed Pharmacother. 1990;44:209–16.

    PubMed  CAS  Google Scholar 

  63. Cole SP, Downes HF, Mirski SE, Clements DJ. Alterations in glutathione and glutathione-related enzymes in a multidrug-resistant small cell lung cancer cell line. Mol Pharmacol. 1990;37:192–7.

    PubMed  CAS  Google Scholar 

  64. Speicher LA, Sheridan VR, Godwin AK, Tew KD. Resistance to the antimitotic drug estramustine is distinct from the multidrug resistant phenotype. Br J Cancer. 1991;64:267–73.

    PubMed  CAS  Google Scholar 

  65. Saito Y, Nakada Y, Hotta T, Mikami T, Kurisu K, Yamada K, Kiya K, Kawamoto K, Uozumi T. Cross-resistance patterns in ACNU-resistant glioma sublines in culture. J Neurosurg. 1991;75:277–83.

    PubMed  CAS  Google Scholar 

  66. Fleming GF, Amato JM, Agresti M, Safa AR. Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992;29:445–9.

    PubMed  CAS  Google Scholar 

  67. Jensen PB, Roed H, Sehested M, Demant EJ, Vindeløv L, Christensen IJ, Hansen HH. Doxorubicin sensitivity pattern in a panel of small-cell lung-cancer cell lines: correlation to etoposide and vincristine sensitivity and inverse correlation to carmustine sensitivity. Cancer Chemother Pharmacol. 1992;31:46–52.

    PubMed  CAS  Google Scholar 

  68. de Jong S, Holtrop M, de Vries H, de Vries EG, Mulder NH. Increased sensitivity of an adriamycin-resistant human small cell lung carcinoma cell line to mitochondrial inhibitors. Biochem Biophys Res Commun. 1992;182:877–85.

    PubMed  Google Scholar 

  69. Larssson R, Fridborg H, Csoka K, Bergh J, Nygren P. Cytotoxic action of cyclosporins on human tumor cell lines is not dependent on immunosuppressive activity. Anticancer Res. 1992;12:1581–5.

    PubMed  CAS  Google Scholar 

  70. Stow MW, Warr JR. Reduced influx is a factor in accounting for reduced vincristine accumulation in certain verapamil-hypersensitive multidrug-resistant CHO cell lines. FEBS Lett. 1993;320:87–91.

    PubMed  CAS  Google Scholar 

  71. Neumann M, Wilisch A, Diddens H, Probst H, Gekeler V. MDR hamster cells exhibiting multiple altered gene expression: effects of dexniguldipine-HCl (B859–35), cyclosporin A and buthionine sulfoximine. Anticancer Res. 1992;12:2297–302.

    PubMed  CAS  Google Scholar 

  72. Barancík M, Docolomanský P, Slezák J, Breier A. Overcoming of vincristine resistance in L1210/VCR cells by several corticosteroids. Collateral sensitivity of resistant cells. Neoplasma. 1993;40:21–5.

    PubMed  Google Scholar 

  73. Jensen PB, Christensen IJ, Sehested M, Hansen HH, Vindeløv L. Differential cytotoxicity of 19 anticancer agents in wild type and etoposide resistant small cell lung cancer cell lines. Br J Cancer. 1993;67:311–20.

    PubMed  CAS  Google Scholar 

  74. Assaraf YG, Slotky JI. Characterization of a lipophilic antifolate resistance provoked by treatment of mammalian cells with the antiparasitic agent pyrimethamine. J Biol Chem. 1993;268:4556–66.

    PubMed  CAS  Google Scholar 

  75. Loe DW, Sharom FJ. Interaction of multidrug-resistant Chinese hamster ovary cells with amphiphiles. Br J Cancer. 1993;68:342–51.

    PubMed  CAS  Google Scholar 

  76. Fichtner I, Stein U, Hoffmann J, Winterfeld G, Pfeil D, Hentschel M. Characterization of four drug-resistant P388 sublines: resistance/sensitivity in vivo, resistance-and proliferation-markers, immunogenicity. Anticancer Res. 1994;14:1995–2003.

    PubMed  CAS  Google Scholar 

  77. Holmberg M, Sandberg C, Nygren P, Larsson R. Effects of lovastatin on a human myeloma cell line: increased sensitivity of a multidrug-resistant subline that expresses the 170 kDa P-glycoprotein. Anticancer Drugs. 1994;5:598–600.

    PubMed  CAS  Google Scholar 

  78. Porter CW, Ganis B, Rustum Y, Wrzosek C, Kramer DL, Bergeron RJ. Collateral sensitivity of human melanoma multidrug-resistant variants to the polyamine analogue, N1, N11-diethylnorspermine. Cancer Res. 1994;54:5917–24.

    PubMed  CAS  Google Scholar 

  79. Cho J, Lee Y, Lutzky J, Redpath L, Slater L. Collateral sensitivity to radiation and cis-platinum in a multidrug-resistant human leukemia cell line. Cancer Chemother Pharmacol. 1995;37:168–72.

    PubMed  CAS  Google Scholar 

  80. Demidova NS, Ilyinskaya GV, Shiryaeva OA, Chernova OB, Goncharova SA, Kopnin BP. Decreased sensitivity of multidrug-resistant tumor cells to cisplatin is correlated with sorcin gene co-amplification. Neoplasma. 1995;42:195–201.

    PubMed  CAS  Google Scholar 

  81. Parekh H, Simpkins H. Cross-resistance and collateral sensitivity to natural product drugs in cisplatin-sensitive and -resistant rat lymphoma and human ovarian carcinoma cells. Cancer Chemother Pharmacol. 1996;37:457–62.

    PubMed  CAS  Google Scholar 

  82. Bentley J, Bell SE, Quinn DM, Kellett GL, Warr JR. 2-deoxy-d-glucose toxicity and transport in human multidrug-resistant KB carcinoma cell lines. Oncol Res. 1996;8:77–84.

    PubMed  CAS  Google Scholar 

  83. Belvedere G, Imperatori L, Damia G, Tagliabue G, Meijer C, de Vries EG, D’Incalci M. In vitro and in vivo characterisation of low-resistant mouse reticulosarcoma (M5076) sublines obtained after pulse and continuous exposure to cisplatin. Eur J Cancer. 1996;32A:2011–8.

    PubMed  CAS  Google Scholar 

  84. Jensen PB, Holm B, Sorensen M, Christensen IJ, Sehested M. In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines: preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabin. Br J Cancer. 1997;75:869–77.

    PubMed  CAS  Google Scholar 

  85. Rekha GK, Sladek NE. Multienzyme-mediated stable and transient multidrug resistance and collateral sensitivity induced by xenobiotics. Cancer Chemother Pharmacol. 1997;40:215–24.

    PubMed  CAS  Google Scholar 

  86. Tohda H, Takao M, Kikuchi A, Yasumoto T, Yasui A. Unstable expression of the multi-drug-resistant phenotype in Chinese hamster ovary cells resistant to okadaic acid. Biochem Biophys Res Commun. 1997;232:398–402.

    PubMed  CAS  Google Scholar 

  87. van Triest B, Pinedo HM, Telleman F, van der Wilt CL, Jansen G, Peters GJ. Cross-resistance to antifolates in multidrug resistant cell lines with P-glycoprotein or multidrug resistance protein expression. Biochem Pharmacol. 1997;53:1855–66.

    PubMed  Google Scholar 

  88. Taki T, Ohnishi T, Arita N, Hiraga S, Hayakawa T. In vivo etoposide-resistant C6 glioma cell line: significance of altered DNA topoisomerase II activity in multi-drug resistance. J Neurooncol. 1998;36:41–53.

    PubMed  CAS  Google Scholar 

  89. Perego P, Romanelli S, Carenini N, Magnani I, Leone R, Bonetti A, Paolicchi A, Zunino F. Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to Taxol. Ann Oncol. 1998;9:423–30.

    PubMed  CAS  Google Scholar 

  90. Sleijfer S, Le TK, de Jong S, Timmer-Bosscha H, Withoff S, Mulder NH. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53. J Immunother. 1999;22:48–53.

    PubMed  CAS  Google Scholar 

  91. Martin-Aragon S, Mukherjee SK, Taylor BJ, Ivy SP, Fu CH, Ardi VC, Avramis VI. Cytosine arabinoside (ara-C) resistance confers cross-resistance or collateral sensitivity to other classes of anti-leukemic drugs. Anticancer Res. 2000;20:139–50.

    PubMed  CAS  Google Scholar 

  92. Ishii M, Iwahana M, Mitsui I, Minami M, Imagawa S, Tohgo A, Ejima A. Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variants derived from the human lung cancer cell line PC-6. Anticancer Drugs. 2000;11:353–62.

    PubMed  CAS  Google Scholar 

  93. Fukuoka K, Yamagishi T, Ichihara T, Nakaike S, Iguchi K, Yamada Y, Fukumoto H, Yoneda T, Samata K, Ikeya H, Nanaumi K, Hirayama N, Narita N, Saijo N, Nishio K. Mechanism of action of aragusterol a (YTA0040), a potent anti-tumor marine steroid targeting the G(1) phase of the cell cycle. Int J Cancer. 2000;88:810–9.

    PubMed  CAS  Google Scholar 

  94. Kawai H, Kiura K, Tabata M, Yoshino T, Takata I, Hiraki A, Chikamori K, Ueoka H, Tanimoto M, Harada M. Characterization of non-small-cell lung cancer cell lines established before and after chemotherapy. Lung Cancer. 2002;35:305–14.

    PubMed  Google Scholar 

  95. Savaraj N, Wu C, Wangpaichitr M, Kuo MT, Lampidis T, Robles C, Furst AJ, Feun L. Overexpression of mutated MRP4 in cisplatin resistant small cell lung cancer cell line: collateral sensitivity to azidothymidine. Int J Oncol. 2003;23:173–9.

    PubMed  CAS  Google Scholar 

  96. Stark M, Rothem L, Jansen G, Scheffer GL, Goldman ID, Assaraf YG. Antifolate resistance associated with loss of MRP1 expression and function in Chinese hamster ovary cells with markedly impaired export of folate and cholate. Mol Pharmacol. 2003;64:220–7.

    PubMed  CAS  Google Scholar 

  97. van der Heijden J, de Jong MC, Dijkmans BA, Lems WF, Oerlemans R, Kathmann I, Scheffer GL, Scheper RJ, Assaraf YG, Jansen G. Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to non-related DMARDs. Ann Rheum Dis. 2004;63:131–7.

    PubMed  Google Scholar 

  98. Kruczynski A, Barret JM, Van Hille B, Chansard N, Astruc J, Menon Y, Duchier C, Créancier L, Hill BT. Decreased nucleotide excision repair activity and alterations of topoisomerase IIalpha are associated with the in vivo resistance of a P388 leukemia subline to F11782, a novel catalytic inhibitor of topoisomerases I and II. Clin Cancer Res. 2004;10:3156–68.

    PubMed  CAS  Google Scholar 

  99. Seo T, Urasaki Y, Takemura H, Ueda T. Arsenic trioxide circumvents multidrug resistance based on different mechanisms in human leukemia cell lines. Anticancer Res. 2005;25:991–8.

    PubMed  CAS  Google Scholar 

  100. Pan BF, Nelson JA. Dihydrodiol dehydrogenase in drug resistance and sensitivity of human carcinomas. Cancer Chemother Pharmacol. 2007;59:697–702.

    PubMed  CAS  Google Scholar 

  101. Horwedel C, Tsogoeva SB, Wei S, Efferth T. Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem. 2010;53:4842–8.

    PubMed  CAS  Google Scholar 

  102. Nakagawa-Goto K, Chang PC, Lai CY, Hung HY, Chen TH, Wu PC, Zhu H, Sedykh A, Bastow KF, Lee KH. Antitumor agents. 280. Multidrug resistance-selective desmosdumotin B analogues. J Med Chem. 2010;53:6699–705.

    PubMed  CAS  Google Scholar 

  103. Cerezo D, Lencina M, Ruiz-Alcaraz AJ, Ferragut JA, Saceda M, Sanchez M, Cánovas M, García-Peñarrubia P, Martín-Orozco E. Acquisition of MDR phenotype by leukemic cells is associated with increased caspase-3 activity and a collateral sensitivity to cold stress. J Cell Biochem. 2012;113:1416–25.

    PubMed  CAS  Google Scholar 

  104. Ajabnoor GM, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis. 2012;3:e260.

    PubMed  CAS  Google Scholar 

  105. Hall MD, Brimacombe KR, Varonka MS, Pluchino KM, Monda JK, Li J, Walsh MJ, Boxer MB, Warren TH, Fales HM, Gottesman MM. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. J Med Chem. 2011;54:5878–89.

    PubMed  CAS  Google Scholar 

  106. Kaplan O, Navon G, Lyon RC, Faustino PJ, Straka EJ, Cohen JS. Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res. 19901;50:544–551.

    Google Scholar 

  107. Nakagawa-Goto K, Bastow KF, Chen TH, Morris-Natschke SL, Lee KH. Antitumor agents 260. New desmosdumotin B analogues with improved in vitro anticancer activity. J Med Chem. 2008;51:3297–303.

    PubMed  CAS  Google Scholar 

  108. Türk D, Hall MD, Chu BF, Ludwig JA, Fales HM, Gottesman MM, Szakács G. Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res. 2009;69:8293–301.

    PubMed  Google Scholar 

  109. Warr JR, Brewer F, Anderson M, Fergusson J. Verapamil hypersensitivity of vincristine resistant Chinese hamster ovary cell lines. Cell Biol Int Rep. 1986;10:389–99.

    PubMed  CAS  Google Scholar 

  110. Warr JR, Anderson M, Fergusson J. Properties of verapamil-hypersensitive multidrug-resistant Chinese hamster ovary cells. Cancer Res. 1988;48:4477–83.

    PubMed  CAS  Google Scholar 

  111. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A. Comparative protein structure modeling with MODELLER. In: Current Protocols in Bioinformatics, Supplement 15. Wiley, New York. 2006; p. 5.6.1–5.6.30.

    Google Scholar 

Download references

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saeed, M., Greten, H.J., Efferth, T. (2013). Collateral Sensitivity in Drug-Resistant Tumor Cells. In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_10

Download citation

Publish with us

Policies and ethics