Skip to main content

Biology and Clinical Relevance of Estrogen Receptors in Prostate Cancer

  • Chapter
  • First Online:
  • 2379 Accesses

Part of the book series: Protein Reviews ((PRON,volume 16))

Abstract

This review explores the function of estrogen receptors (ERs) and their signaling pathways, and their involvement in the pathogenesis and management of prostate cancer (PCa). We pay special attention to (1) traditional estrogen receptors (ERα and ERβ) and the alternate estrogen receptor, G protein-coupled receptor 30 (GPR30); (2) therapeutic utility of estrogen and antiestrogens; (3) impact of genetic variants of ERs on prostate cancer risk; (4) epigenetic regulation of ERs; (5) downstream signaling of ERs; (6) diagnostic and prognostic value of these receptors; and (7) interaction between ERβ and aryl hydrocarbon receptor or androgen receptor. We also explore (a) the expression patterns of ERs and their spliced isoforms during normal development and the development and progression of PCa; (b) the divergent roles of the estrogen receptors as tumor suppressors and tumor promoters; (c) the possibility of developmental origin of the disease; and (d) the regulation of estrogen receptors via epigenetic modifications such as DNA methylation, histone modification, and microRNA processing. We also review the potential clinical application of various phytoestrogens (genistein, equol, dihydrogenistein, and daidzein), selective estrogen-receptor modulators (SERMs: tamoxifen, toremifene, and raloxifene), pure estrogen antagonists (e.g., fulvestrant), and transdermal estradiol delivered as preventive agents and first-line therapies or combinatory agents. We highlight the need for further studies of the role of ERs in epithelial–mesenchymal transition, prostate stem/progenitor cell function, and cross talk with other nuclear receptors and address the prospect of devising strategies for primordial prevention of PCa through improvements in the understanding of estrogen imprinting in early life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J et al (2004) Human prostate cancer risk factors. Cancer 101:2371–2490

    PubMed  CAS  Google Scholar 

  2. Ho SM (2004) Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 91:491–503

    PubMed  CAS  Google Scholar 

  3. Ho SM, Leung YK, Chung I (2006) Estrogens and antiestrogens as etiological factors and therapeutics for prostate cancer. Ann N Y Acad Sci 1089:177–193

    PubMed  CAS  Google Scholar 

  4. American Cancer Society (2012) Cancer facts and figures 2012. American Cancer Society, Atlanta, GA

    Google Scholar 

  5. Richards RJ, Svec F, Bao W, Srinivasan SR, Berenson GS (1992) Steroid hormones during puberty: racial (black-white) differences in androstenedione and estradiol–the Bogalusa Heart Study. J Clin Endocrinol Metab 75:624–631

    PubMed  CAS  Google Scholar 

  6. Ross R, Bernstein L, Judd H, Hanisch R, Pike M, Henderson B (1986) Serum testosterone levels in healthy young black and white men. J Natl Cancer Inst 76:45–48

    PubMed  CAS  Google Scholar 

  7. Rohrmann S, Nelson WG, Rifai N, Brown TR, Dobs A, Kanarek N et al (2007) Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab 92:2519–2525

    PubMed  CAS  Google Scholar 

  8. Abdelrahaman E, Raghavan S, Baker L, Weinrich M, Winters SJ (2005) Racial difference in circulating sex hormone-binding globulin levels in prepubertal boys. Metabolism 54:91–96

    PubMed  CAS  Google Scholar 

  9. Orwoll ES, Nielson CM, Labrie F, Barrett-Connor E, Cauley JA, Cummings SR et al (2010) Evidence for geographical and racial variation in serum sex steroid levels in older men. J Clin Endocrinol Metab 95:E151–E160

    PubMed  CAS  Google Scholar 

  10. de Jong FH, Oishi K, Hayes RB, Bogdanowicz JF, Raatgever JW, van der Maas PJ et al (1991) Peripheral hormone levels in controls and patients with prostatic cancer or benign prostatic hyperplasia: results from the Dutch-Japanese case-control study. Cancer Res 51:3445–3450

    PubMed  Google Scholar 

  11. Bosland MC (1999) Use of animal models in defining efficacy of chemoprevention agents against prostate cancer. Eur Urol 35:459–463

    PubMed  CAS  Google Scholar 

  12. Daniels NA, Nielson CM, Hoffman AR, Bauer DC (2010) Sex hormones and the risk of incident prostate cancer. Urology 76:1034–1040

    PubMed  Google Scholar 

  13. Ricke WA, Wang Y, Cunha GR (2007) Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation 75:871–882

    PubMed  CAS  Google Scholar 

  14. Assenza GE, Autore C, Marino B (2007) Hypertrophic cardiomyopathy in a patient with Down's syndrome. J Cardiovasc Med (Hagerstown) 8:463–464

    Google Scholar 

  15. Prins GS, Huang L, Birch L, Pu Y (2006) The role of estrogens in normal and abnormal development of the prostate gland. Ann N Y Acad Sci 1089:1–13

    PubMed  CAS  Google Scholar 

  16. Prins GS, Korach KS (2008) The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids 73:233–244

    PubMed  CAS  Google Scholar 

  17. Cheung SY, Choi HL, James AE, Chen ZY, Huang Y, Chan FL (2003) Spontaneous ­mammary tumors in aging Noble rats. Int J Oncol 22:449–457

    PubMed  CAS  Google Scholar 

  18. Tam NN, Leav I, Ho SM (2007) Sex hormones induce direct epithelial and inflammation-­mediated oxidative/nitrosative stress that favors prostatic carcinogenesis in the noble rat. Am J Pathol 171:1334–1341

    PubMed  CAS  Google Scholar 

  19. Noble RL (1977) The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res 37:1929–1933

    PubMed  CAS  Google Scholar 

  20. Yatkin E, Bernoulli J, Talvitie EM, Santti R (2009) Inflammation and epithelial alterations in rat prostate: impact of the androgen to oestrogen ratio. Int J Androl 32:399–410

    PubMed  CAS  Google Scholar 

  21. Ricke WA, Ishii K, Ricke EA, Simko J, Wang Y, Hayward SW et al (2006) Steroid hormones stimulate human prostate cancer progression and metastasis. Int J Cancer 118:2123–2131

    PubMed  CAS  Google Scholar 

  22. Bernoulli J, Yatkin E, Konkol Y, Talvitie EM, Santti R, Streng T (2008) Prostatic inflammation and obstructive voiding in the adult Noble rat: impact of the testosterone to estradiol ratio in serum. Prostate 68:1296–1306

    PubMed  CAS  Google Scholar 

  23. Yatkin E, Bernoulli J, Lammintausta R, Santti R (2008) Fispemifene [Z-2-{2-[4-(4-chloro-1,2-diphenylbut-1-enyl)-phenoxy]ethoxy}-ethanol], a novel selective estrogen receptor ­modulator, attenuates glandular inflammation in an animal model of chronic nonbacterial prostatitis. J Pharmacol Exp Ther 327:58–67

    PubMed  CAS  Google Scholar 

  24. Bernoulli J, Yatkin E, Laakso A, Anttinen M, Bosland M, Vega K et al (2008) Histopathological evidence for an association of inflammation with ductal pin-like lesions but not with ductal adenocarcinoma in the prostate of the noble rat. Prostate 68:728–739

    PubMed  CAS  Google Scholar 

  25. Risbridger GP, Ellem SJ, McPherson SJ (2007) Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol 39:183–188

    PubMed  CAS  Google Scholar 

  26. Warner M, Gustafsson JA (2010) The role of estrogen receptor beta (ERbeta) in malignant diseases–a new potential target for antiproliferative drugs in prevention and treatment of ­cancer. Biochem Biophys Res Commun 396:63–66

    PubMed  CAS  Google Scholar 

  27. Ho SM, Lee MT, Lam HM, Leung YK (2011) Estrogens and prostate cancer: etiology, ­mediators, prevention, and management. Endocrinol Metab Clin North Am 40:591–614, ix

    PubMed  CAS  Google Scholar 

  28. Hall JM, McDonnell DP, Korach KS (2002) Allosteric regulation of estrogen receptor ­structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol 16:469–486

    PubMed  CAS  Google Scholar 

  29. Hyder SM, Chiappetta C, Stancel GM (1999) Interaction of human estrogen receptors alpha and beta with the same naturally occurring estrogen response elements. Biochem Pharmacol 57:597–601

    PubMed  CAS  Google Scholar 

  30. Hall JM, Korach KS (2002) Analysis of the molecular mechanisms of human estrogen ­receptors alpha and beta reveals differential specificity in target promoter regulation by ­xenoestrogens. J Biol Chem 277:44455–44461

    PubMed  CAS  Google Scholar 

  31. Mosselman S, Polman J, Dijkema R (1996) ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 392:49–53

    PubMed  CAS  Google Scholar 

  32. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S et al (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    PubMed  CAS  Google Scholar 

  33. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263

    PubMed  CAS  Google Scholar 

  34. Danielian PS, White R, Lees JA, Parker MG (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11:1025–1033

    PubMed  CAS  Google Scholar 

  35. Koehler KF, Helguero LA, Haldosen LA, Warner M, Gustafsson JA (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 26:465–478

    PubMed  CAS  Google Scholar 

  36. Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 275:35986–35993

    PubMed  CAS  Google Scholar 

  37. Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T et al (2001) Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol Pharm Bull 24:351–356

    PubMed  CAS  Google Scholar 

  38. Katzenellenbogen BS, Sun J, Harrington WR, Kraichely DM, Ganessunker D, Katzenellenbogen JA (2001) Structure-function relationships in estrogen receptors and the characterization of novel selective estrogen receptor modulators with unique pharmacological profiles. Ann N Y Acad Sci 949:6–15

    PubMed  CAS  Google Scholar 

  39. Dondi D, Piccolella M, Biserni A, Della TS, Ramachandran B, Locatelli A et al (2010) Estrogen receptor beta and the progression of prostate cancer: role of 5alpha-androstane-3beta,17beta-diol. Endocr Relat Cancer 17:731–742

    PubMed  CAS  Google Scholar 

  40. Osborne CK, Schiff R, Fuqua SA, Shou J (2001) Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res 7:4338s–4342s

    PubMed  CAS  Google Scholar 

  41. Tremblay GB, Giguere V (2002) Coregulators of estrogen receptor action. Crit Rev Eukaryot Gene Expr 12:1–22

    PubMed  CAS  Google Scholar 

  42. Wang D, Hu L, Zhang G, Zhang L, Chen C (2010) G protein-coupled receptor 30 in tumor development. Endocrine 38:29–37

    PubMed  Google Scholar 

  43. Maggiolini M, Picard D (2010) The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol 204:105–114

    PubMed  CAS  Google Scholar 

  44. Park II, Zhang Q, Liu V, Kozlowski JM, Zhang J, Lee C (2009) 17Beta-estradiol at low concentrations acts through distinct pathways in normal versus benign prostatic hyperplasia-­derived prostate stromal cells. Endocrinology 150:4594–4605

    PubMed  CAS  Google Scholar 

  45. Takada Y, Kato C, Kondo S, Korenaga R, Ando J (1997) Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun 240:737–741

    PubMed  CAS  Google Scholar 

  46. Owman C, Blay P, Nilsson C, Lolait SJ (1996) Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt’s lymphoma and widely distributed in brain and peripheral tissues. Biochem Biophys Res Commun 228:285–292

    PubMed  CAS  Google Scholar 

  47. Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ (1997) Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45:607–617

    PubMed  CAS  Google Scholar 

  48. O’Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HH et al (1998) Discovery of three novel G-protein-coupled receptor genes. Genomics 47:310–313

    PubMed  Google Scholar 

  49. Wang C, Prossnitz ER, Roy SK (2007) Expression of G protein-coupled receptor 30 in the hamster ovary: differential regulation by gonadotropins and steroid hormones. Endocrinology 148:4853–4864

    PubMed  CAS  Google Scholar 

  50. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632

    PubMed  CAS  Google Scholar 

  51. Funakoshi T, Yanai A, Shinoda K, Kawano MM, Mizukami Y (2006) G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem Biophys Res Commun 346:904–910

    PubMed  CAS  Google Scholar 

  52. Filardo E, Quinn J, Pang Y, Graeber C, Shaw S, Dong J et al (2007) Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 148:3236–3245

    PubMed  CAS  Google Scholar 

  53. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    PubMed  CAS  Google Scholar 

  54. Revankar CM, Mitchell HD, Field AS, Burai R, Corona C, Ramesh C et al (2007) Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chem Biol 2:536–544

    PubMed  CAS  Google Scholar 

  55. Wang C, Prossnitz ER, Roy SK (2008) G protein-coupled receptor 30 expression is required for estrogen stimulation of primordial follicle formation in the hamster ovary. Endocrinology 149:4452–4461

    PubMed  CAS  Google Scholar 

  56. Matsuda K, Sakamoto H, Mori H, Hosokawa K, Kawamura A, Itose M et al (2008) Expression and intracellular distribution of the G protein-coupled receptor 30 in rat hippocampal formation. Neurosci Lett 441:94–99

    PubMed  CAS  Google Scholar 

  57. Otto C, Rohde-Schulz B, Schwarz G, Fuchs I, Klewer M, Brittain D et al (2008) G protein-­coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology 149:4846–4856

    PubMed  CAS  Google Scholar 

  58. Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS et al (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2:207–212

    PubMed  CAS  Google Scholar 

  59. Prossnitz ER, Oprea TI, Sklar LA, Arterburn JB (2008) The ins and outs of GPR30: a transmembrane estrogen receptor. J Steroid Biochem Mol Biol 109:350–353

    PubMed  CAS  Google Scholar 

  60. Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI (2002) Estrogen action via the G protein-­coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70–84

    PubMed  CAS  Google Scholar 

  61. Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Ando S et al (2006) The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-­estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 20:631–646

    PubMed  CAS  Google Scholar 

  62. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A et al (2006) 17beta-­estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70:1414–1423

    PubMed  CAS  Google Scholar 

  63. Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D (2009) Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 28:523–532

    PubMed  Google Scholar 

  64. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179

    PubMed  CAS  Google Scholar 

  65. Madeo A, Maggiolini M (2010) Nuclear alternate estrogen receptor GPR30 mediates 17beta-­estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 70:6036–6046

    PubMed  CAS  Google Scholar 

  66. Adams JY, Leav I, Lau KM, Ho SM, Pflueger SM (2002) Expression of estrogen receptor beta in the fetal, neonatal, and prepubertal human prostate. Prostate 52:69–81

    PubMed  CAS  Google Scholar 

  67. Shapiro E, Huang H, Masch RJ, McFadden DE, Wilson EL, Wu XR (2005) Immunolocalization of estrogen receptor alpha and beta in human fetal prostate. J Urol 174:2051–2053

    PubMed  CAS  Google Scholar 

  68. Rubio-Stipec M, Bird H, Canino G, Gould M (1990) The internal consistency and concurrent validity of a Spanish translation of the Child Behavior Checklist. J Abnorm Child Psychol 18:393–406

    PubMed  CAS  Google Scholar 

  69. Fixemer T, Remberger K, Bonkhoff H (2003) Differential expression of the estrogen receptor beta (ERbeta) in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate 54:79–87

    PubMed  CAS  Google Scholar 

  70. Horvath LG, Henshall SM, Lee CS, Head DR, Quinn DI, Makela S et al (2001) Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 61:5331–5335

    PubMed  CAS  Google Scholar 

  71. Latil A, Bieche I, Vidaud D, Lidereau R, Berthon P, Cussenot O et al (2001) Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res 61:1919–1926

    PubMed  CAS  Google Scholar 

  72. Leav I, Lau KM, Adams JY, McNeal JE, Taplin ME, Wang J et al (2001) Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am J Pathol 159:79–92

    PubMed  CAS  Google Scholar 

  73. Royuela M, de Miguel MP, Bethencourt FR, Sanchez-Chapado M, Fraile B, Arenas MI et al (2001) Estrogen receptors alpha and beta in the normal, hyperplastic and carcinomatous human prostate. J Endocrinol 168:447–454

    PubMed  CAS  Google Scholar 

  74. Torlakovic E, Lilleby W, Torlakovic G, Fossa SD, Chibbar R (2002) Prostate carcinoma expression of estrogen receptor-beta as detected by PPG5/10 antibody has positive association with primary Gleason grade and Gleason score. Hum Pathol 33:646–651

    PubMed  CAS  Google Scholar 

  75. Leung YK, Lam HM, Wu S, Song D, Levin L, Cheng L et al (2010) Estrogen receptor beta2 and beta5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr Relat Cancer 17:675–689

    PubMed  CAS  Google Scholar 

  76. Taplin ME, Ho SM (2001) Clinical review 134: the endocrinology of prostate cancer. J Clin Endocrinol Metab 86:3467–3477

    PubMed  CAS  Google Scholar 

  77. Weihua Z, Warner M, Gustafsson JA (2002) Estrogen receptor beta in the prostate. Mol Cell Endocrinol 193:1–5

    PubMed  Google Scholar 

  78. Kawashima H, Nakatani T (2012) Involvement of estrogen receptors in prostatic diseases. Int J Urol 19:512–522

    PubMed  CAS  Google Scholar 

  79. Chen M, Hsu I, Wolfe A, Radovick S, Huang K, Yu S et al (2009) Defects of prostate development and reproductive system in the estrogen receptor-alpha null male mice. Endocrinology 150:251–259

    PubMed  CAS  Google Scholar 

  80. Haqq C, Li R, Khodabakhsh D, Frolov A, Ginzinger D, Thompson T et al (2005) Ethnic and racial differences in prostate stromal estrogen receptor alpha. Prostate 65:101–109

    PubMed  CAS  Google Scholar 

  81. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF et al (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 95:15677–15682

    PubMed  CAS  Google Scholar 

  82. Jiang J, Chang HL, Sugimoto Y, Lin YC (2005) Effects of age on growth and ERbeta mRNA expression of canine prostatic cells. Anticancer Res 25:4081–4090

    PubMed  CAS  Google Scholar 

  83. Signoretti S, Loda M (2001) Estrogen receptor beta in prostate cancer: brake pedal or ­accelerator? Am J Pathol 159:13–16

    PubMed  CAS  Google Scholar 

  84. Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA et al (2001) Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 7:3092–3096

    PubMed  CAS  Google Scholar 

  85. Sissung TM, Danesi R, Kirkland CT, Baum CE, Ockers SB, Stein EV et al (2011) Estrogen receptor alpha and aromatase polymorphisms affect risk, prognosis, and therapeutic outcome in men with castration-resistant prostate cancer treated with docetaxel-based therapy. J Clin Endocrinol Metab 96:E368–E372

    PubMed  CAS  Google Scholar 

  86. Hernandez J, Balic I, Johnson-Pais TL, Higgins BA, Torkko KC, Thompson IM et al (2006) Association between an estrogen receptor alpha gene polymorphism and the risk of prostate cancer in black men. J Urol 175:523–527

    PubMed  CAS  Google Scholar 

  87. Gupta L, Thakur H, Sobti RC, Seth A, Singh SK (2010) Role of genetic polymorphism of estrogen receptor-alpha gene and risk of prostate cancer in north Indian population. Mol Cell Biochem 335:255–261

    PubMed  CAS  Google Scholar 

  88. Suzuki K, Nakazato H, Matsui H, Koike H, Okugi H, Kashiwagi B et al (2003) Genetic polymorphisms of estrogen receptor alpha, CYP19, catechol-O-methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer 98:1411–1416

    PubMed  CAS  Google Scholar 

  89. Low YL, Taylor JI, Grace PB, Mulligan AA, Welch AA, Scollen S et al (2006) Phytoestrogen exposure, polymorphisms in COMT, CYP19, ESR1, and SHBG genes, and their associations with prostate cancer risk. Nutr Cancer 56:31–39

    PubMed  CAS  Google Scholar 

  90. Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S (2012) Estrogen receptors alpha (rs2234693 and rs9340799), and beta (rs4986938 and rs1256049) genes polymorphism in prostate cancer: Evidence for association with risk and histopathological tumor characteristics in Iranian men. Mol Carcinog 51(Suppl 1):E104–E117

    PubMed  CAS  Google Scholar 

  91. Holt SK, Kwon EM, Fu R, Kolb S, Feng Z, Ostrander EA et al (2013) Association of variants in estrogen-related pathway genes with prostate cancer risk. Prostate 73(1):1–10

    PubMed  CAS  Google Scholar 

  92. Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L et al (2007) Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 16:969–978

    PubMed  CAS  Google Scholar 

  93. Berndt SI, Chatterjee N, Huang WY, Chanock SJ, Welch R, Crawford ED et al (2007) Variant in sex hormone-binding globulin gene and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 16:165–168

    PubMed  CAS  Google Scholar 

  94. Beuten J, Gelfond JA, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL et al (2009) Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 18:1869–1880

    PubMed  CAS  Google Scholar 

  95. Chae YK, Huang HY, Strickland P, Hoffman SC, Helzlsouer K (2009) Genetic polymorphisms of estrogen receptors alpha and beta and the risk of developing prostate cancer. PLoS One 4:e6523

    PubMed  Google Scholar 

  96. Sun T, Lee GS, Werner L, Pomerantz M, Oh WK, Kantoff PW et al (2010) Inherited ­variations in AR, ESR1, and ESR2 genes are not associated with prostate cancer aggressiveness or with efficacy of androgen deprivation therapy. Cancer Epidemiol Biomarkers Prev 19:1871–1878

    PubMed  CAS  Google Scholar 

  97. McIntyre MH, Kantoff PW, Stampfer MJ, Mucci LA, Parslow D, Li H et al (2007) Prostate cancer risk and ESR1 TA, ESR2 CA repeat polymorphisms. Cancer Epidemiol Biomarkers Prev 16:2233–2236

    PubMed  CAS  Google Scholar 

  98. Nicolaiew N, Cancel-Tassin G, Azzouzi AR, Grand BL, Mangin P, Cormier L et al (2009) Association between estrogen and androgen receptor genes and prostate cancer risk. Eur J Endocrinol 160:101–106

    PubMed  CAS  Google Scholar 

  99. Tanaka Y, Sasaki M, Kaneuchi M, Shiina H, Igawa M, Dahiya R (2003) Polymorphisms of estrogen receptor alpha in prostate cancer. Mol Carcinog 37:202–208

    PubMed  CAS  Google Scholar 

  100. Thellenberg-Karlsson C, Lindstrom S, Malmer B, Wiklund F, Augustsson-Balter K, Adami HO et al (2006) Estrogen receptor beta polymorphism is associated with prostate cancer risk. Clin Cancer Res 12:1936–1941

    PubMed  CAS  Google Scholar 

  101. Chen YC, Kraft P, Bretsky P, Ketkar S, Hunter DJ, Albanes D et al (2007) Sequence variants of estrogen receptor beta and risk of prostate cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiol Biomarkers Prev 16:1973–1981

    PubMed  CAS  Google Scholar 

  102. Giess M, Lattrich C, Springwald A, Goerse R, Ortmann O, Treeck O (2010) GPR30 gene polymorphisms are associated with progesterone receptor status and histopathological characteristics of breast cancer patients. J Steroid Biochem Mol Biol 118:7–12

    PubMed  CAS  Google Scholar 

  103. Kakinuma N, Sato M, Yamada T, Kohu K, Nakajima M, Akiyama T et al (2005) Cloning of novel LERGU mRNAs in GPR30 3′ untranslated region and detection of 2 bp-deletion polymorphism in gastric cancer. Cancer Sci 96:191–196

    PubMed  CAS  Google Scholar 

  104. Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P (2012) Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 36:671–677

    PubMed  Google Scholar 

  105. Shidlovskaia NK, Dubrovina TI, Poliak RI (1991) [Formation of target cells in the immunocompetent organ (spleen) of mice with experimental infection caused by influenza A viruses with various properties]. Vestn Akad Med Nauk SSSR: 23–27

    Google Scholar 

  106. Saramaki OR, Savinainen KJ, Nupponen NN, Bratt O, Visakorpi T (2001) Amplification of hypoxia-inducible factor 1alpha gene in prostate cancer. Cancer Genet Cytogenet 128:31–34

    PubMed  CAS  Google Scholar 

  107. National Center for Biotechnology Information. ESR1 estrogen receptor 1 [Homo sapiens]. 11-25-2012. National Center for Biotechnology Information, U.S. National Library of Medicine, NCBI. 12-8-2012

    Google Scholar 

  108. Ye Q, Chung LW, Cinar B, Li S, Zhau HE (2000) Identification and characterization of estrogen receptor variants in prostate cancer cell lines. J Steroid Biochem Mol Biol 75:21–31

    PubMed  CAS  Google Scholar 

  109. Taylor SE, Patel II, Singh PB, Nicholson CM, Stringfellow HF, Gopala Krishna RK et al (2010) Elevated oestrogen receptor splice variant ERalphaDelta5 expression in tumour-­adjacent hormone-responsive tissue. Int J Environ Res Public Health 7:3871–3889

    PubMed  CAS  Google Scholar 

  110. Hirata S, Shoda T, Kato J, Hoshi K (2001) The multiple untranslated first exons system of the human estrogen receptor beta (ER beta) gene. J Steroid Biochem Mol Biol 78:33–40

    PubMed  CAS  Google Scholar 

  111. Zhao C, Lam EW, Sunters A, Enmark E, De Bella MT, Coombes RC et al (2003) Expression of estrogen receptor beta isoforms in normal breast epithelial cells and breast cancer: regulation by methylation. Oncogene 22:7600–7606

    PubMed  CAS  Google Scholar 

  112. Suzuki F, Akahira J, Miura I, Suzuki T, Ito K, Hayashi S et al (2008) Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5′-untranslated region in human epithelial ovarian carcinoma. Cancer Sci 99:2365–2372

    PubMed  CAS  Google Scholar 

  113. Zhu X, Leav I, Leung YK, Wu M, Liu Q, Gao Y et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012

    PubMed  CAS  Google Scholar 

  114. Zhang X, Leung YK, Ho SM (2007) AP-2 regulates the transcription of estrogen receptor (ER)-beta by acting through a methylation hotspot of the 0 N promoter in prostate cancer cells. Oncogene 26:7346–7354

    PubMed  CAS  Google Scholar 

  115. Leung YK, Lee MT, Lam HM, Tarapore P, Ho SM (2012) Estrogen receptor-beta and breast cancer: translating biology into clinical practice. Steroids 77:727–737

    PubMed  CAS  Google Scholar 

  116. Wethmar K, Smink JJ, Leutz A (2010) Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 32:885–893

    PubMed  CAS  Google Scholar 

  117. Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL et al (1998) Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 247:75–78

    PubMed  CAS  Google Scholar 

  118. Poola I, Abraham J, Baldwin K, Saunders A, Bhatnagar R (2005) Estrogen receptors beta4 and beta5 are full length functionally distinct ERbeta isoforms: cloning from human ovary and functional characterization. Endocrine 27:227–238

    PubMed  CAS  Google Scholar 

  119. Leung YK, Mak P, Hassan S, Ho SM (2006) Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci USA 103:13162–13167

    PubMed  CAS  Google Scholar 

  120. Fujimura T, Takahashi S, Urano T, Ogawa S, Ouchi Y, Kitamura T et al (2001) Differential expression of estrogen receptor beta (ERbeta) and its C-terminal truncated splice variant ERbetacx as prognostic predictors in human prostatic cancer. Biochem Biophys Res Commun 289:692–699

    PubMed  CAS  Google Scholar 

  121. Nagasaki S, Nakamura Y, Maekawa T, Akahira J, Miki Y, Suzuki T et al (2012) Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor betacx in human prostate carcinoma. Neoplasma 59:224–232

    PubMed  CAS  Google Scholar 

  122. Dey P, Jonsson P, Hartman J, Williams C, Strom A, Gustafsson JA (2012) Estrogen receptors beta1 and beta2 have opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3. Mol Endocrinol 26(12):1991–2003

    PubMed  CAS  Google Scholar 

  123. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    PubMed  CAS  Google Scholar 

  124. Tang WY, Ho SM (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182

    PubMed  Google Scholar 

  125. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK et al (2007) The landscape of histone modifications across 1 % of the human genome in five human cell lines. Genome Res 17:691–707

    PubMed  CAS  Google Scholar 

  126. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    PubMed  CAS  Google Scholar 

  127. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  128. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    PubMed  CAS  Google Scholar 

  129. Pasquali D, Rossi V, Esposito D, Abbondanza C, Puca GA, Bellastella A et al (2001) Loss of estrogen receptor beta expression in malignant human prostate cells in primary cultures and in prostate cancer tissues. J Clin Endocrinol Metab 86:2051–2055

    PubMed  CAS  Google Scholar 

  130. Li LC, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R (2000) Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 60:702–706

    PubMed  CAS  Google Scholar 

  131. Sasaki M, Tanaka Y, Perinchery G, Dharia A, Kotcherguina I, Fujimoto S et al (2002) Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst 94:384–390

    PubMed  CAS  Google Scholar 

  132. Moriyama-Gonda N, Shiina H, Terashima M, Satoh K, Igawa M (2008) Rationale and clinical implication of combined chemotherapy with cisplatin and oestrogen in prostate cancer: primary evidence based on methylation analysis of oestrogen receptor-alpha. BJU Int 101:485–491

    PubMed  CAS  Google Scholar 

  133. Yao Q, He XS, Zhang JM, He J (2006) Promotor hypermethylation of E-cadherin, p16 and estrogen receptor in prostate carcinoma. Zhonghua Nan Ke Xue 12:28–31

    PubMed  CAS  Google Scholar 

  134. Li LC, Shiina H, Deguchi M, Zhao H, Okino ST, Kane CJ et al (2004) Age-dependent ­methylation of ESR1 gene in prostate cancer. Biochem Biophys Res Commun 321:455–461

    PubMed  CAS  Google Scholar 

  135. Nojima D, Li LC, Dharia A, Perinchery G, Ribeiro-Filho L, Yen TS et al (2001) CpG hypermethylation of the promoter region inactivates the estrogen receptor-beta gene in patients with prostate carcinoma. Cancer 92:2076–2083

    PubMed  CAS  Google Scholar 

  136. Bovenzi V, Momparler RL (2001) Antineoplastic action of 5-aza-2′-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol 48:71–76

    PubMed  CAS  Google Scholar 

  137. Keen JC, Yan L, Mack KM, Pettit C, Smith D, Sharma D et al (2003) A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat 81:177–186

    PubMed  CAS  Google Scholar 

  138. Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol 19:1740–1751

    PubMed  CAS  Google Scholar 

  139. Walton TJ, Li G, Seth R, McArdle SE, Bishop MC, Rees RC (2008) DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate 68:210–222

    PubMed  CAS  Google Scholar 

  140. Stettner M, Kaulfuss S, Burfeind P, Schweyer S, Strauss A, Ringert RH et al (2007) The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Mol Cancer Ther 6:2626–2633

    PubMed  CAS  Google Scholar 

  141. Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab 23:223–233

    PubMed  CAS  Google Scholar 

  142. Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S et al (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8:529–538

    PubMed  CAS  Google Scholar 

  143. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al (2010) Identification of the miR-106b 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29

    PubMed  Google Scholar 

  144. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH, et al (2011) MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol [Epub ahead of print]

    Google Scholar 

  145. Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL et al (2010) miR-­193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 127:1363–1372

    PubMed  CAS  Google Scholar 

  146. Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, et al (2012) CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene [Epub ahead of print]

    Google Scholar 

  147. Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S et al (2010) Estrogen receptor {beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res 70:4778–4784

    PubMed  CAS  Google Scholar 

  148. Risbridger G, Wang H, Young P, Kurita T, Wang YZ, Lubahn D et al (2001) Evidence that epithelial and mesenchymal estrogen receptor-alpha mediates effects of estrogen on prostatic epithelium. Dev Biol 229:432–442

    PubMed  CAS  Google Scholar 

  149. Chen M, Yeh CR, Chang HC, Vitkus S, Wen XQ, Bhowmick NA et al (2012) Loss of ­epithelial oestrogen receptor alpha inhibits oestrogen-stimulated prostate proliferation and squamous metaplasia via in vivo tissue selective knockout models. J Pathol 226:17–27

    PubMed  CAS  Google Scholar 

  150. Brody H, Goldman SF (1940) Metaplasia of the epithelium of the prostatic glands, utricle and urethra of the fetus and newborn infant. Arch Pathol Lab Med 29:494–540

    Google Scholar 

  151. Andrews GS (1951) The histology of the human foetal and prepubertal prostates. J Anat 85:44–54

    PubMed  CAS  Google Scholar 

  152. Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS (2001) Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice. Cancer Res 61:6089–6097

    PubMed  CAS  Google Scholar 

  153. Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, Risbridger GP (2008) Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J 22:1512–1520

    PubMed  CAS  Google Scholar 

  154. Neubauer BL, McNulty AM, Chedid M, Chen K, Goode RL, Johnson MA et al (2003) The selective estrogen receptor modulator trioxifene (LY133314) inhibits metastasis and extends survival in the PAIII rat prostatic carcinoma model. Cancer Res 63:6056–6062

    PubMed  CAS  Google Scholar 

  155. Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS (2002) Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 62:1370–1376

    PubMed  CAS  Google Scholar 

  156. Attia DM, Ederveen AG (2012) Opposing roles of ERalpha and ERbeta in the genesis and progression of adenocarcinoma in the rat ventral prostate. Prostate 72:1013–1022

    PubMed  CAS  Google Scholar 

  157. Bonkhoff H, Fixemer T, Hunsicker I, Remberger K (1999) Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am J Pathol 155:641–647

    PubMed  CAS  Google Scholar 

  158. Price D, Stein B, Sieber P, Tutrone R, Bailen J, Goluboff E et al (2006) Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo controlled, phase IIB clinical trial. J Urol 176:965–970

    PubMed  CAS  Google Scholar 

  159. Yu L, Wang CY, Shi J, Miao L, Du X, Mayer D et al (2011) Estrogens promote invasion of prostate cancer cells in a paracrine manner through up-regulation of matrix metalloproteinase 2 in prostatic stromal cells. Endocrinology 152:773–781

    PubMed  CAS  Google Scholar 

  160. Weihua Z, Makela S, Andersson LC, Salmi S, Saji S, Webster JI et al (2001) A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci USA 98:6330–6335

    PubMed  CAS  Google Scholar 

  161. Morani A, Warner M, Gustafsson JA (2008) Biological functions and clinical implications of oestrogen receptors alfa and beta in epithelial tissues. J Intern Med 264:128–142

    PubMed  CAS  Google Scholar 

  162. Antal MC, Krust A, Chambon P, Mark M (2008) Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERbeta-null mutant. Proc Natl Acad Sci USA 105:2433–2438

    PubMed  CAS  Google Scholar 

  163. Couse JF, Curtis HS, Korach KS (2000) Receptor null mice reveal contrasting roles for estrogen receptor alpha and beta in reproductive tissues. J Steroid Biochem Mol Biol 74:287–296

    PubMed  CAS  Google Scholar 

  164. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127:4277–4291

    PubMed  CAS  Google Scholar 

  165. Ji Q, Liu PI, Elshimali Y, Stolz A (2005) Frequent loss of estrogen and progesterone receptors in human prostatic tumors determined by quantitative real-time PCR. Mol Cell Endocrinol 229:103–110

    PubMed  CAS  Google Scholar 

  166. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA et al (2010) ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 17:319–332

    PubMed  CAS  Google Scholar 

  167. Lai JS, Brown LG, True LD, Hawley SJ, Etzioni RB, Higano CS et al (2004) Metastases of prostate cancer express estrogen receptor-beta. Urology 64:814–820

    PubMed  Google Scholar 

  168. Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S et al (2009) Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest 119:1093–1108

    PubMed  CAS  Google Scholar 

  169. Cheng J, Lee EJ, Madison LD, Lazennec G (2004) Expression of estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis. FEBS Lett 566:169–172

    PubMed  Google Scholar 

  170. Hurtado A, Pinos T, Barbosa-Desongles A, Lopez-Aviles S, Barquinero J, Petriz J et al (2008) Estrogen receptor beta displays cell cycle-dependent expression and regulates the G1 phase through a non-genomic mechanism in prostate carcinoma cells. Cell Oncol 30:349–365

    PubMed  CAS  Google Scholar 

  171. Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A et al (2005) The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res 65:5445–5453

    PubMed  CAS  Google Scholar 

  172. McPherson SJ, Hussain S, Balanathan P, Hedwards SL, Niranjan B, Grant M et al (2010) Estrogen receptor-beta activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFalpha mediated. Proc Natl Acad Sci USA 107:3123–3128

    PubMed  CAS  Google Scholar 

  173. Nakajima Y, Akaogi K, Suzuki T, Osakabe A, Yamaguchi C, Sunahara N et al (2011) Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5. Sci Signal 4:ra22

    PubMed  Google Scholar 

  174. Chan QK, Lam HM, Ng CF, Lee AY, Chan ES, Ng HK et al (2010) Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-­fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ 17:1511–1523

    PubMed  CAS  Google Scholar 

  175. Miroshnichenko II, Kudrin VS, Raevskii KS (1988) Effect of carbidine, sulpiride and haloperidol on levels of monoamines and their metabolites in the brain structures of rats. Farmakol Toksikol 51:26–29

    PubMed  CAS  Google Scholar 

  176. Huggins C, Hodges CV (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22:232–240

    PubMed  CAS  Google Scholar 

  177. The Leuprolide Study Group (1984) Leuprolide versus diethylstilbestrol for metastatic prostate cancer. N Engl J Med 311:1281–1286

    Google Scholar 

  178. Cox RL, Crawford ED (1995) Estrogens in the treatment of prostate cancer. J Urol 154:1991–1998

    PubMed  CAS  Google Scholar 

  179. Denis LJ, Griffiths K (2000) Endocrine treatment in prostate cancer. Semin Surg Oncol 18:52–74

    PubMed  CAS  Google Scholar 

  180. Clemons J, Glode LM, Gao D, Flaig TW (2011) Low-dose diethylstilbestrol for the treatment of advanced prostate cancer. Urol Oncol 31:198–204

    Google Scholar 

  181. Wilkins A, Shahidi M, Parker C, Gunapala R, Thomas K, Huddart R, et al (2012) Diethylstilbestrol in castration-resistant prostate cancer. BJU Int 110:E727–E735

    Google Scholar 

  182. Bosset PO, Albiges L, Seisen T, de la Motte RT, Phe V, Bitker MO et al (2012) Current role of diethylstilbestrol in the management of advanced prostate cancer. BJU Int 110(11 Pt C):E826–E829

    PubMed  CAS  Google Scholar 

  183. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    PubMed  CAS  Google Scholar 

  184. Bergan RC, Reed E, Myers CE, Headlee D, Brawley O, Cho HK et al (1999) A phase II study of high-dose tamoxifen in patients with hormone-refractory prostate cancer. Clin Cancer Res 5:2366–2373

    PubMed  CAS  Google Scholar 

  185. Stein S, Zoltick B, Peacock T, Holroyde C, Haller D, Armstead B et al (2001) Phase II trial of toremifene in androgen-independent prostate cancer: a Penn cancer clinical trials group trial. Am J Clin Oncol 24:283–285

    PubMed  CAS  Google Scholar 

  186. Hamilton M, Dahut W, Brawley O, Davis P, Wells-Jones T, Kohler D et al (2003) A phase I/II study of high-dose tamoxifen in combination with vinblastine in patients with androgen-­independent prostate cancer. Acta Oncol 42:195–201

    PubMed  CAS  Google Scholar 

  187. Lissoni P, Vigano P, Vaghi M, Frontini L, Giuberti C, Manganini V et al (2005) A phase II study of tamoxifen in hormone-resistant metastatic prostate cancer: possible relation with prolactin secretion. Anticancer Res 25:3597–3599

    PubMed  CAS  Google Scholar 

  188. Shazer RL, Jain A, Galkin AV, Cinman N, Nguyen KN, Natale RB et al (2006) Raloxifene, an oestrogen-receptor-beta-targeted therapy, inhibits androgen-independent prostate cancer growth: results from preclinical studies and a pilot phase II clinical trial. BJU Int 97:691–697

    PubMed  CAS  Google Scholar 

  189. Smith MR, Morton RA, Barnette KG, Sieber PR, Malkowicz SB, Rodriguez D et al (2010) Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol 184:1316–1321

    PubMed  CAS  Google Scholar 

  190. Smith MR, Malkowicz SB, Chu F, Forrest J, Price D, Sieber P et al (2008) Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter phase 3 clinical study. J Urol 179:152–155

    PubMed  CAS  Google Scholar 

  191. Smith MR, Malkowicz SB, Brawer MK, Hancock ML, Morton RA, Steiner MS (2011) Toremifene decreases vertebral fractures in men younger than 80 years receiving androgen deprivation therapy for prostate cancer. J Urol 186:2239–2244

    PubMed  CAS  Google Scholar 

  192. Hill JC, Krishnaveni GV, Annamma I, Leary SD, Fall CH (2005) Glucose tolerance in pregnancy in South India: relationships to neonatal anthropometry. Acta Obstet Gynecol Scand 84:159–165

    PubMed  Google Scholar 

  193. Boccardo F, Rubagotti A, Battaglia M, Di TP, Selvaggi FP, Conti G et al (2005) Evaluation of tamoxifen and anastrozole in the prevention of gynecomastia and breast pain induced by bicalutamide monotherapy of prostate cancer. J Clin Oncol 23:808–815

    PubMed  CAS  Google Scholar 

  194. Bedognetti D, Rubagotti A, Conti G, Francesca F, De CO, Canclini L et al (2010) An open, randomised, multicentre, phase 3 trial comparing the efficacy of two tamoxifen schedules in preventing gynaecomastia induced by bicalutamide monotherapy in prostate cancer patients. Eur Urol 57:238–245

    PubMed  Google Scholar 

  195. Bland LB, Garzotto M, DeLoughery TG, Ryan CW, Schuff KG, Wersinger EM et al (2005) Phase II study of transdermal estradiol in androgen-independent prostate carcinoma. Cancer 103:717–723

    PubMed  CAS  Google Scholar 

  196. Langley RE, Godsland IF, Kynaston H, Clarke NW, Rosen SD, Morgan RC et al (2008) Early hormonal data from a multicentre phase II trial using transdermal oestrogen patches as first-­line hormonal therapy in patients with locally advanced or metastatic prostate cancer. BJU Int 102:442–445

    PubMed  CAS  Google Scholar 

  197. Ockrim JL, Lalani EN, Laniado ME, Carter SS, Abel PD (2003) Transdermal estradiol therapy for advanced prostate cancer–forward to the past? J Urol 169:1735–1737

    PubMed  CAS  Google Scholar 

  198. Ockrim JL, Lalani e, Kakkar AK, Abel PD (2005) Transdermal estradiol therapy for prostate cancer reduces thrombophilic activation and protects against thromboembolism. J Urol 174:527–533

    Google Scholar 

  199. Gerber GS, Zagaja GP, Ray PS, Rukstalis DB (2000) Transdermal estrogen in the treatment of hot flushes in men with prostate cancer. Urology 55:97–101

    PubMed  CAS  Google Scholar 

  200. Ockrim JL, Lalani EN, Banks LM, Svensson WE, Blomley MJ, Patel S et al (2004) Transdermal estradiol improves bone density when used as single agent therapy for prostate cancer. J Urol 172:2203–2207

    PubMed  CAS  Google Scholar 

  201. Stein M, Goodin S, Doyle-Lindrud S, Silberberg J, Kane M, Metzger D et al (2012) Transdermal estradiol in castrate and chemotherapy resistant prostate cancer. Med Sci Monit 18:CR260–CR264

    PubMed  CAS  Google Scholar 

  202. Leung YK, Gao Y, Lau KM, Zhang X, Ho SM (2006) ICI 182,780-regulated gene expression in DU145 prostate cancer cells is mediated by estrogen receptor-beta/NFkappaB crosstalk. Neoplasia 8:242–249

    PubMed  CAS  Google Scholar 

  203. Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60:3175–3182

    PubMed  CAS  Google Scholar 

  204. Wei JJ, Wu X, Peng Y, Shi G, Basturk O, Yang X et al (2011) Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res 17:1297–1305

    PubMed  CAS  Google Scholar 

  205. Takeuchi I, Takaha N, Nakamura T, Hongo F, Mikami K, Kamoi K et al (2012) High mobility group protein AT-hook 1 (HMGA1) is associated with the development of androgen independence in prostate cancer cells. Prostate 72:1124–1132

    PubMed  CAS  Google Scholar 

  206. Kawashima H, Tanaka T, Cheng JS, Sugita S, Ezaki K, Kurisu T et al (2004) Effect of anti-­estrogens on the androgen receptor activity and cell proliferation in prostate cancer cells. Urol Res 32:406–410

    PubMed  CAS  Google Scholar 

  207. Bhattacharyya RS, Krishnan AV, Swami S, Feldman D (2006) Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells. Mol Cancer Ther 5:1539–1549

    PubMed  CAS  Google Scholar 

  208. Huang YW, Wang LS, Chang HL, Ye W, Shu S, Sugimoto Y et al (2006) Effect of keratinocyte growth factor on cell viability in primary cultured human prostate cancer stromal cells. J Steroid Biochem Mol Biol 100:24–33

    PubMed  CAS  Google Scholar 

  209. Ho CK, Nanda J, Chapman KE, Habib FK (2008) Oestrogen and benign prostatic hyperplasia: effects on stromal cell proliferation and local formation from androgen. J Endocrinol 197:483–491

    PubMed  CAS  Google Scholar 

  210. Huynh H, Alpert L, Alaoui-Jamali MA, Ng CY, Chan TW (2001) Co-administration of finasteride and the pure anti-oestrogen ICI 182,780 act synergistically in modulating the IGF system in rat prostate. J Endocrinol 171:109–118

    PubMed  CAS  Google Scholar 

  211. Leav I, Ho SM, Ofner P, Merk FB, Kwan PW, Damassa D (1988) Biochemical alterations in sex hormone-induced hyperplasia and dysplasia of the dorsolateral prostates of Noble rats. J Natl Cancer Inst 80:1045–1053

    PubMed  CAS  Google Scholar 

  212. Leav I, Merk FB, Kwan PW, Ho SM (1989) Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate 15:23–40

    PubMed  CAS  Google Scholar 

  213. Tam NN, Szeto CY, Freudenberg JM, Fullenkamp AN, Medvedovic M, Ho SM (2010) Research resource: estrogen-driven prolactin-mediated gene-expression networks in hormone-­induced prostatic intraepithelial neoplasia. Mol Endocrinol 24:2207–2217

    PubMed  CAS  Google Scholar 

  214. Tam NN, Szeto CY, Sartor MA, Medvedovic M, Ho SM (2008) Gene expression profiling identifies lobe-specific and common disruptions of multiple gene networks in testosterone-­supported, 17beta-estradiol- or diethylstilbestrol-induced prostate dysplasia in Noble rats. Neoplasia 10:20–40

    PubMed  CAS  Google Scholar 

  215. Thompson CJ, Tam NN, Joyce JM, Leav I, Ho SM (2002) Gene expression profiling of testosterone and estradiol-17 beta-induced prostatic dysplasia in Noble rats and response to the antiestrogen ICI 182,780. Endocrinology 143:2093–2105

    PubMed  CAS  Google Scholar 

  216. Fernandes SA, Gomes GR, Siu ER, Damas-Souza DM, Bruni-Cardoso A, Augusto TM et al (2011) The anti-oestrogen fulvestrant (ICI 182,780) reduces the androgen receptor expression, ERK1/2 phosphorylation and cell proliferation in the rat ventral prostate. Int J Androl 34:486–500

    PubMed  CAS  Google Scholar 

  217. Chadha MK, Ashraf U, Lawrence D, Tian L, Levine E, Silliman C et al (2008) Phase II study of fulvestrant (Faslodex) in castration resistant prostate cancer. Prostate 68:1461–1466

    PubMed  CAS  Google Scholar 

  218. Gasent Blesa JM, Alberola CV, Giner MV, Giner-Bosch V, Provencio PM, Laforga Canales JB (2010) Experience with fulvestrant acetate in castration-resistant prostate cancer patients. Ann Oncol 21:1131–1132

    PubMed  CAS  Google Scholar 

  219. Magee PJ, Rowland IR (2004) Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 91:513–531

    PubMed  CAS  Google Scholar 

  220. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG et al (2003) Soy ­isoflavones: a safety review. Nutr Rev 61:1–33

    PubMed  Google Scholar 

  221. Trock BJ, Hilakivi-Clarke L, Clarke R (2006) Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 98:459–471

    PubMed  CAS  Google Scholar 

  222. Taylor CK, Levy RM, Elliott JC, Burnett BP (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67:398–415

    PubMed  Google Scholar 

  223. Sonn GA, Aronson W, Litwin MS (2005) Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis 8:304–310

    PubMed  CAS  Google Scholar 

  224. Jian L (2009) Soy, isoflavones, and prostate cancer. Mol Nutr Food Res 53:217–226

    PubMed  CAS  Google Scholar 

  225. Lampe JW (2010) Emerging research on equol and cancer. J Nutr 140:1369S–1372S

    PubMed  CAS  Google Scholar 

  226. Markiewicz L, Garey J, Adlercreutz H, Gurpide E (1993) In vitro bioassays of non-steroidal phytoestrogens. J Steroid Biochem Mol Biol 45:399–405

    PubMed  CAS  Google Scholar 

  227. Milligan SR, Balasubramanian AV, Kalita JC (1998) Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect 106:23–26

    PubMed  CAS  Google Scholar 

  228. deVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H, Hackman RM (2010) Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer 62:1036–1043

    PubMed  CAS  Google Scholar 

  229. Ganry O (2005) Phytoestrogens and prostate cancer risk. Prev Med 41:1–6

    PubMed  CAS  Google Scholar 

  230. Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D et al (2003) Soy isoflavones in the treatment of prostate cancer. Nutr Cancer 47:111–117

    PubMed  CAS  Google Scholar 

  231. Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW (2003) Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 12:665–668

    PubMed  CAS  Google Scholar 

  232. Ozasa K, Nakao M, Watanabe Y, Hayashi K, Miki T, Mikami K et al (2004) Serum phytoestrogens and prostate cancer risk in a nested case-control study among Japanese men. Cancer Sci 95:65–71

    PubMed  CAS  Google Scholar 

  233. Stattin P, Adlercreutz H, Tenkanen L, Jellum E, Lumme S, Hallmans G et al (2002) Circulating enterolactone and prostate cancer risk: a Nordic nested case-control study. Int J Cancer 99:124–129

    PubMed  CAS  Google Scholar 

  234. Strom SS, Yamamura Y, Duphorne CM, Spitz MR, Babaian RJ, Pillow PC et al (1999) Phytoestrogen intake and prostate cancer: a case-control study using a new database. Nutr Cancer 33:20–25

    PubMed  CAS  Google Scholar 

  235. Travis RC, Spencer EA, Allen NE, Appleby PN, Roddam AW, Overvad K et al (2009) Plasma phyto-oestrogens and prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Br J Cancer 100:1817–1823

    PubMed  CAS  Google Scholar 

  236. Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J et al (2004) The specific role of isoflavones in reducing prostate cancer risk. Prostate 59:141–147

    PubMed  CAS  Google Scholar 

  237. Dalais FS, Meliala A, Wattanapenpaiboon N, Frydenberg M, Suter DA, Thomson WK et al (2004) Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology 64:510–515

    PubMed  Google Scholar 

  238. Jarred RA, Keikha M, Dowling C, McPherson SJ, Clare AM, Husband AJ et al (2002) Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-­derived dietary isoflavones. Cancer Epidemiol Biomarkers Prev 11:1689–1696

    PubMed  CAS  Google Scholar 

  239. Miltyk W, Craciunescu CN, Fischer L, Jeffcoat RA, Koch MA, Lopaczynski W et al (2003) Lack of significant genotoxicity of purified soy isoflavones (genistein, daidzein, and glycitein) in 20 patients with prostate cancer. Am J Clin Nutr 77:875–882

    PubMed  CAS  Google Scholar 

  240. Takimoto CH, Glover K, Huang X, Hayes SA, Gallot L, Quinn M et al (2003) Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev 12:1213–1221

    PubMed  CAS  Google Scholar 

  241. Lazarevic B, Boezelijn G, Diep LM, Kvernrod K, Ogren O, Ramberg H et al (2011) Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer 63:889–898

    PubMed  CAS  Google Scholar 

  242. Cavalieri EL, Rogan EG (2002) A unified mechanism in the initiation of cancer. Ann N Y Acad Sci 959:341–354

    PubMed  CAS  Google Scholar 

  243. Lakhani NJ, Sarkar MA, Venitz J, Figg WD (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23:165–172

    PubMed  CAS  Google Scholar 

  244. Sato F, Fukuhara H, Basilion JP (2005) Effects of hormone deprivation and 2-­methoxyestradiol combination therapy on hormone-dependent prostate cancer in vivo. Neoplasia 7:838–846

    PubMed  CAS  Google Scholar 

  245. Reiner T, de las PA, Gomez LA, Perez-Stable C (2009) Low dose combinations of 2-methoxyestradiol and docetaxel block prostate cancer cells in mitosis and increase apoptosis. Cancer Lett 276:21–31

    PubMed  CAS  Google Scholar 

  246. Ghosh R, Ganapathy M, Alworth WL, Chan DC, Kumar AP (2009) Combination of 2-methoxyestradiol (2-ME2) and eugenol for apoptosis induction synergistically in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 113:25–35

    PubMed  CAS  Google Scholar 

  247. Coss CC, Jones A, Parke DN, Narayanan R, Barrett CM, Kearbey JD et al (2012) Preclinical characterization of a novel diphenyl benzamide selective ERalpha agonist for hormone therapy in prostate cancer. Endocrinology 153:1070–1081

    PubMed  CAS  Google Scholar 

  248. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242

    PubMed  CAS  Google Scholar 

  249. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D et al (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265

    PubMed  CAS  Google Scholar 

  250. Ekbom A, Hsieh CC, Lipworth L, Wolk A, Ponten J, Adami HO et al (1996) Perinatal characteristics in relation to incidence of and mortality from prostate cancer. BMJ 313:337–341

    PubMed  CAS  Google Scholar 

  251. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    PubMed  CAS  Google Scholar 

  252. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    PubMed  CAS  Google Scholar 

  253. Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815

    PubMed  CAS  Google Scholar 

  254. Wang X, Kruithof-de JM, Economides KD, Walker D, Yu H, Halili MV et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    PubMed  CAS  Google Scholar 

  255. Pretlow TG, Wolman SR, Micale MA, Pelley RJ, Kursh ED, Resnick MI et al (1993) Xenografts of primary human prostatic carcinoma. J Natl Cancer Inst 85:394–398

    PubMed  CAS  Google Scholar 

  256. Klein KA, Reiter RE, Redula J, Moradi H, Zhu XL, Brothman AR et al (1997) Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med 3:402–408

    PubMed  CAS  Google Scholar 

  257. Hu WY, Shi GB, Lam HM, Hu DP, Ho SM, Madueke IC et al (2011) Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 152:2150–2163

    PubMed  CAS  Google Scholar 

  258. Hu WY, Shi GB, Hu DP, Nelles JL, Prins GS (2012) Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol 354:63–73

    PubMed  CAS  Google Scholar 

  259. Hussain S, Lawrence MG, Taylor RA, Lo CY, Frydenberg M, Ellem SJ et al (2012) Estrogen receptor beta activation impairs prostatic regeneration by inducing apoptosis in murine and human stem/progenitor enriched cell populations. PLoS One 7:e40732

    PubMed  CAS  Google Scholar 

  260. Rajfer J, Coffey DS (1978) Sex steroid imprinting of the immature prostate. Long-term effects. Invest Urol 16:186–190

    PubMed  CAS  Google Scholar 

  261. Arai Y, Suzuki Y, Nishizuka Y (1977) Hyperplastic and metaplastic lesions in the reproductive tract of male rats induced by neonatal treatment with diethylstilbestrol. Virchows Arch A Pathol Anat Histol 376:21–28

    PubMed  CAS  Google Scholar 

  262. Arai Y, Mori T, Suzuki Y, Bern HA (1983) Long-term effects of perinatal exposure to sex steroids and diethylstilbestrol on the reproductive system of male mammals. Int Rev Cytol 84:235–268

    PubMed  CAS  Google Scholar 

  263. Prins GS (1992) Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression. Endocrinology 130:2401–2412

    PubMed  CAS  Google Scholar 

  264. Vorherr H, Messer RH, Vorherr UF, Jordan SW, Kornfeld M (1979) Teratogenesis and carcinogenesis in rat offspring after transplacental and transmammary exposure to diethylstilbestrol. Biochem Pharmacol 28:1865–1877

    PubMed  CAS  Google Scholar 

  265. McLachlan JA (1977) Prenatal exposure to diethylstilbestrol in mice: toxicological studies. J Toxicol Environ Health 2:527–537

    PubMed  CAS  Google Scholar 

  266. Pylkkanen L, Santti R, Newbold R, McLachlan JA (1991) Regional differences in the prostate of the neonatally estrogenized mouse. Prostate 18:117–129

    PubMed  CAS  Google Scholar 

  267. Vomsaal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC et al (1997) Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci USA 94:2056–2061

    CAS  Google Scholar 

  268. Ho SM, Tang WY, de Belmonte FJ, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    PubMed  CAS  Google Scholar 

  269. Potischman N, Troisi R, Thadhani R, Hoover RN, Dodd K, Davis WW et al (2005) Pregnancy hormone concentrations across ethnic groups: implications for later cancer risk. Cancer Epidemiol Biomarkers Prev 14:1514–1520

    PubMed  CAS  Google Scholar 

  270. Ekbom A, Wuu J, Adami HO, Lu CM, Lagiou P, Trichopoulos D et al (2000) Duration of gestation and prostate cancer risk in offspring. Cancer Epidemiol Biomarkers Prev 9:221–223

    PubMed  CAS  Google Scholar 

  271. Chapin RE, Adams J, Boekelheide K, Gray LE Jr, Hayward SW, Lees PS et al (2008) NTP-­CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol 83:157–395

    PubMed  CAS  Google Scholar 

  272. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841

    PubMed  CAS  Google Scholar 

  273. Ranjit N, Siefert K, Padmanabhan V (2010) Bisphenol-A and disparities in birth outcomes: a review and directions for future research. J Perinatol 30:2–9

    PubMed  CAS  Google Scholar 

  274. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–A707

    PubMed  Google Scholar 

  275. Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G et al (2002) Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod Toxicol 16:735–739

    PubMed  CAS  Google Scholar 

  276. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M et al (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417

    PubMed  CAS  Google Scholar 

  277. Re A, Aiello A, Nanni S, Grasselli A, Benvenuti V, Pantisano V et al (2011) Silencing of GSTP1, a prostate cancer prognostic gene, by the estrogen receptor-beta and endothelial nitric oxide synthase complex. Mol Endocrinol 25:2003–2016

    PubMed  CAS  Google Scholar 

  278. Yang L, Ravindranathan P, Ramanan M, Kapur P, Hammes SR, Hsieh JT et al (2012) Central role for PELP1 in nonandrogenic activation of the androgen receptor in prostate cancer. Mol Endocrinol 26:550–561

    PubMed  CAS  Google Scholar 

  279. Scordalakes EM, Shetty SJ, Rissman EF (2002) Roles of estrogen receptor alpha and ­androgen receptor in the regulation of neuronal nitric oxide synthase. J Comp Neurol 453:336–344

    PubMed  CAS  Google Scholar 

  280. Ando S, De AF, Rago V, Carpino A, Maggiolini M, Panno ML et al (2002) Breast cancer: from estrogen to androgen receptor. Mol Cell Endocrinol 193:121–128

    PubMed  CAS  Google Scholar 

  281. Lanzino M, De AF, McPhaul MJ, Marsico S, Panno ML, Ando S (2005) Endogenous coactivator ARA70 interacts with estrogen receptor alpha (ERalpha) and modulates the functional ERalpha/androgen receptor interplay in MCF-7 cells. J Biol Chem 280:20421–20430

    PubMed  CAS  Google Scholar 

  282. Need EF, Selth LA, Harris TJ, Birrell SN, Tilley WD, Buchanan G (2012) Research resource: interplay between the genomic and transcriptional networks of androgen receptor and estrogen receptor alpha in luminal breast cancer cells. Mol Endocrinol 26:1941–1952

    PubMed  CAS  Google Scholar 

  283. Luthy IA, Begin D, Labrie F (1988) Mediation by the androgen receptor of the stimulatory and antiandrogenic actions of 17 beta-estradiol on the growth of androgen-sensitive Shionogi mammary carcinoma cells in culture. Endocrinology 123:1418–1424

    PubMed  CAS  Google Scholar 

  284. Kumar MB, Tarpey RW, Perdew GH (1999) Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 274:22155–22164

    PubMed  CAS  Google Scholar 

  285. Madak-Erdogan Z, Katzenellenbogen BS (2012) Aryl hydrocarbon receptor modulation of estrogen receptor alpha-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 125:401–411

    PubMed  CAS  Google Scholar 

  286. Kharat I, Saatcioglu F (1996) Antiestrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by direct transcriptional interference with the liganded estrogen receptor. ­Cross-­talk between aryl hydrocarbon- and estrogen-mediated signaling. J Biol Chem 271:10533–10537

    PubMed  CAS  Google Scholar 

  287. Wang W, Smith R III, Safe S (1998) Aryl hydrocarbon receptor-mediated antiestrogenicity in MCF-7 cells: modulation of hormone-induced cell cycle enzymes. Arch Biochem Biophys 356:239–248

    PubMed  CAS  Google Scholar 

  288. Matthews J, Wihlen B, Thomsen J, Gustafsson JA (2005) Aryl hydrocarbon ­receptor-­mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25:5317–5328

    PubMed  CAS  Google Scholar 

  289. Kietz S, Thomsen JS, Matthews J, Pettersson K, Strom A, Gustafsson JA (2004) The Ah receptor inhibits estrogen-induced estrogen receptor beta in breast cancer cells. Biochem Biophys Res Commun 320:76–82

    PubMed  CAS  Google Scholar 

  290. Caruso JA, Laird DW, Batist G (1999) Role of HSP90 in mediating cross-talk between the estrogen receptor and the Ah receptor signal transduction pathways. Biochem Pharmacol 58:1395–1403

    PubMed  CAS  Google Scholar 

  291. Ohtake F, Baba A, Fujii-Kuriyama Y, Kato S (2008) Intrinsic AhR function underlies cross-­talk of dioxins with sex hormone signalings. Biochem Biophys Res Commun 370:541–546

    PubMed  CAS  Google Scholar 

  292. Ohtake F, Fujii-Kuriyama Y, Kato S (2009) AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 77:474–484

    PubMed  CAS  Google Scholar 

  293. Wormke M, Stoner M, Saville B, Walker K, Abdelrahim M, Burghardt R et al (2003) The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol Cell Biol 23:1843–1855

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Nancy Voynow for her professional editing of this manuscript. This work was supported by grants from NIH (ES020988, ES019480, ES006096, CA15776, and CA112532 to SMH), CDMRP Department of Defense (PC094619 to PT) and VA (BX000675 to SMH), and an internal funding source from the University of Cincinnati Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuk-Mei Ho Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Mayo Clinic

About this chapter

Cite this chapter

Ho, SM., Tarapore, P., Lee, MT., Leung, YK. (2013). Biology and Clinical Relevance of Estrogen Receptors in Prostate Cancer. In: Tindall, D. (eds) Prostate Cancer. Protein Reviews, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6828-8_14

Download citation

Publish with us

Policies and ethics