Skip to main content

Stochastic Lot Sizing Problems

  • Chapter
  • First Online:

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 192))

Abstract

In this chapter dynamic lot sizing problems with random demands are discussed. Several approaches to handle uncertainty are presented. Single-item problems as well as multi-item lot sizing problems with limited capacities of a scarce resource are considered. Thereby the focus is on numerically tractable solution approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See [32].

  2. 2.

    This problem was first discussed by [34].

  3. 3.

    Note that several alternative model formulations are available. See [17].

  4. 4.

    Some model versions include also time-dependent variable production costs.

  5. 5.

    See [8].

  6. 6.

    See [2, 9, 31].

  7. 7.

    See [11].

  8. 8.

    See [5].

  9. 9.

    See [13, 20].

  10. 10.

    See [4], who also propose a heuristic solution procedure.

  11. 11.

    See [10].

  12. 12.

    See [5].

  13. 13.

    In case that the predetermined order-up-to level is smaller than the available inventory, the lot size is zero, in contrast to sending back the surplus stock to the supplier.

  14. 14.

    See [18].

  15. 15.

    See also [21].

  16. 16.

    See [33].

  17. 17.

    See [27].

  18. 18.

    See [11].

  19. 19.

    See [3, 5, 14, 23].

  20. 20.

    See [2, 9, 31].

  21. 21.

    See [25].

  22. 22.

    See [26, 29].

  23. 23.

    See [27, 29].

  24. 24.

    See [12].

  25. 25.

    See [24].

  26. 26.

    See [1].

  27. 27.

    See [24].

  28. 28.

    See [5, 23].

  29. 29.

    See [25].

  30. 30.

    See [27].

  31. 31.

    See [22, 35].

  32. 32.

    A literature overview over this type of models is given by [7].

  33. 33.

    See [11].

  34. 34.

    See [11].

  35. 35.

    See [28].

  36. 36.

    See [15].

  37. 37.

    See [16].

  38. 38.

    See [6].

  39. 39.

    See [26].

  40. 40.

    This means that the integrality requirements for the δ variables are omitted.

  41. 41.

    See [11].

  42. 42.

    See [19].

References

  1. Askin, R. (1981). A procedure for production lot sizing with probabilistic dynamic demand. AIIE Transactions13, 132–137.

    Article  Google Scholar 

  2. Banerjee, A., & Paul, A. (2005). Average fill rate and horizon length. Operations Research Letters33, 525–530.

    Article  Google Scholar 

  3. Bitran, G., & Yanasse, H. (1984). Deterministic approximations to stochastic production problems. Operations Research32, 999–1018.

    Article  Google Scholar 

  4. Bollapragada, S., & Morton, T. (1999). Simple heuristic for computing nonstationary (s, S) policies. Operations Research47, 576–584.

    Article  Google Scholar 

  5. Bookbinder, J., & Tan, J.-Y. (1988). Strategies for the probabilistic lot-sizing problem with service-level constraints. Management Science34, 1096–1108.

    Article  Google Scholar 

  6. Bradley, S., Hax, A., & Magnanti, T. (1977). Applied mathematical programming. Reading: Addison-Wesley.

    Google Scholar 

  7. Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2010). Dynamic capacitated lotsizing problems – a classification and review of solution approaches. OR Spectrum32(2), 231–261.

    Article  Google Scholar 

  8. Chen, F., & Krass, D. (2001). Inventory models with minimal service level constraints. European Journal of Operational Research134, 120–140.

    Article  Google Scholar 

  9. Chen, J., Lin, D., & Thomas, D. (2003). On the single item fill rate for a finite horizon. Operations Research Letters31, 119–123.

    Article  Google Scholar 

  10. Guan, Y., Ahmed, S., Miller, A., & Nemhauser, G. (2006). On formulations of the stochastic uncapacitated lot-sizing problem. Operations Research Letters34, 241–250.

    Article  Google Scholar 

  11. Helber, S., Sahling, F., & Schimmelpfeng, K. (2012). Dynamic capacitated lot sizing with random demand and dynamic safety stocks. OR Spectrum, 38, 75–105.

    Google Scholar 

  12. Herpers, S. (2009). Dynamische Losgrößenplanung bei stochastischer Nachfrage. Köln: Kölner Wissenschaftsverlag.

    Google Scholar 

  13. Iglehart, D. (1963). Dynamic programming and stationary analysis of inventory problems. In H. Scarf, D. Gilford, & M. Shelley (Eds.), Multistage inventory models and techniques. Stanford: Stanford University Press.

    Google Scholar 

  14. Lasserre, J., Bes, C., & Roubellat, F. (1985). The stochastic discrete dynamic lot size problem: An open-loop solution. Operations Research33, 684–689.

    Article  Google Scholar 

  15. Maes, J., & Van Wassenhove, L. (1986). A simple heuristic for the multi item single level capacitated lotsizing problem. OR Letters4, 265–273.

    Google Scholar 

  16. Manne, A. (1958). Programming of economic lot sizes. Management Science4, 115–135.

    Article  Google Scholar 

  17. Pochet, Y., & Wolsey, L. (2006). Production planning using mixed-integer programming. New York: Springer.

    Google Scholar 

  18. Rossi, R., Tarim, S., Hnich, B., & Prestwich, S. (2008). A global chance-constraint for stochastic inventory systems under service levels constraints. Constraints13, 490–517.

    Article  Google Scholar 

  19. Sahling, F., Buschkühl, L., Helber, S., & Tempelmeier, H. (2009). Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic. Computers & Operations Research36, 2546–2553.

    Article  Google Scholar 

  20. Scarf, H. (1959). The optimality of (S, s) policies in the dynamic inventory problem. In K. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical methods in the social sciences (pp. 196–202). Stanford: Stanford University Press.

    Google Scholar 

  21. Sox, C. (1997). Dynamic lot sizing with random demand and non-stationary costs. Operations Research Letters20, 155–164.

    Article  Google Scholar 

  22. Sox, C., Jackson, P., Bowman, A., & Muckstadt, J. (1999). A review of the stochastic lot scheduling problem. International Journal of Production Economics62, 181–200.

    Article  Google Scholar 

  23. Tarim, S., & Kingsman, B. (2004). The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. International Journal of Production Economics88, 105–119.

    Article  Google Scholar 

  24. Tarim, S., & Kingsman, B. (2006). Modelling and computing \(({R}^{n},{S}^{n})\) policies for inventory systems with non-stationary stochastic demands. European Journal of Operational Research174, 581–599.

    Article  Google Scholar 

  25. Tempelmeier, H. (2007). On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints. European Journal of Operational Research181, 184–194.

    Article  Google Scholar 

  26. Tempelmeier, H. (2011). A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint. Omega39, 627–633.

    Article  Google Scholar 

  27. Tempelmeier, H. (2011). Inventory management in supply networks – problems, models, solutions (2nd ed.). Norderstedt: Books on Demand.

    Google Scholar 

  28. Tempelmeier, H., & Herpers, S. (2010). ABC β - a heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint. International Journal of Production Research48, 5181–5193.

    Article  Google Scholar 

  29. Tempelmeier, H., & Herpers, S. (2011). Dynamic uncapacitated lot sizing with random demand under a fillrate constraint. European Journal of Operational Research212(3), 497–507.

    Article  Google Scholar 

  30. Tempelmeier, H., & Hilger, T. (2013). Linear programming models for the stochastic dynamic capacitated lot sizing problem. Technical report, University of Cologne, Department of Supply Chain Management and Production, Cologne, Germany.

    Google Scholar 

  31. Thomas, D. (2005). Measuring item fill-rate performance in a finite horizon. Manufacturing & Service Operations Management7, 74–80.

    Article  Google Scholar 

  32. Tunc, H., Kilic, O., Tarim, S. A., & Eksioglu, B. (2011). The cost of using stationary inventory policies when demand is non-stationary. Omega39, 410–415.

    Article  Google Scholar 

  33. Vargas, V. (2009). An optimal solution for the stochastic version of the Wagner-Whitin dynamic lot-size model. European Journal of Operational Research198, 447–451.

    Article  Google Scholar 

  34. Wagner, H., & Whitin, T. (1958). Dynamic version of the economic lot size model. Management Science5, 89–96.

    Article  Google Scholar 

  35. Winands, E., Adan, I., & van Houtum, G. (2011). The stochastic economic lot scheduling problem: A survey. European Journal of Operational Research210, 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to Timo Hilger, who cooperated in the preparation of the numerical experiments performed during the development and analysis of the different optimization models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Tempelmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tempelmeier, H. (2013). Stochastic Lot Sizing Problems. In: Smith, J., Tan, B. (eds) Handbook of Stochastic Models and Analysis of Manufacturing System Operations. International Series in Operations Research & Management Science, vol 192. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6777-9_10

Download citation

Publish with us

Policies and ethics