Skip to main content

Basic Science of the Merkel Cell

  • Chapter
  • First Online:
  • 861 Accesses

Abstract

In 1875, Friedrich Sigmund Merkel identified a unique epidermal cell type closely associated with sensory nerve endings. These “Tastzallen” or “touch cells” have subsequently been renamed Merkel cells in his honor. Recent genetic and electrophysiological studies offer conclusive evidence that Merkel cells play a critical role in mechanoreception. Based on expression of bioactive peptides, it has also been suggested that Merkel cells may participate in skin homeostasis.

The most direct link between Merkel cells and human disease comes in the form of Merkel cell carcinoma (MCC), a rare and deadly carcinoma of the skin. Several lines of evidence indicate that Merkel cells and MCC arise from the same cellular lineage, but the molecular and genetic pathways that control disease pathogenesis are unknown. The recent discovery of Merkel cell polyomavirus (MCPyV), which appears to be involved in MCC initiation, and increased insight into pathways that control normal Merkel cell specification and development offer exciting new avenues for understanding and treating this devastating disorder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith KR. The ultrastructure of the human Haarscheibe and Merkel cell. J Invest Dermatol. 1970;54:150–9.

    Article  PubMed  Google Scholar 

  2. Hashimoto K. The ultrastructure of the skin of human embryos. X. Merkel tactile cells in the finger and nail. J Anat. 1972;111:99–120.

    PubMed  CAS  Google Scholar 

  3. Kurosumi K, Kurosumi U, Suzuki H. Fine structures of Merkel cells and associated nerve fibers in the epidermis of certain mammalian species. Arch Histol Jpn. 1969;30:295–313.

    Article  PubMed  CAS  Google Scholar 

  4. Halata Z, Grim M, Bauman KI. Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec. 2003;271:225–39.

    Article  Google Scholar 

  5. Rickelt S, Moll I, Franke WW. Intercellular adhering junctions with an asymmetric molecularcomposition: desmosomes connecting Merkel cells and keratinocytes. Cell Tissue Res. 2011;346:65–77.

    Article  PubMed  CAS  Google Scholar 

  6. Toyoshima K, Seta Y, Takeda S, Harada H. Identification of Merkel cells by an antibody to villin. J Histochem Cytochem. 1998;46:1329–34.

    Article  PubMed  CAS  Google Scholar 

  7. Saurat JH, Didierjean L, Skalli O, Siegenthaler G, Gabbiani G. The intermediate filament proteins of rabbit normal epidermal Merkel cells are cytokeratins. J Invest Dermatol. 1984;83:431–5.

    Article  PubMed  CAS  Google Scholar 

  8. Moll R, Moll I, Franke WW. Identification of Merkel cells in human skin by specific cytokeratin antibodies: changes of cell density and distribution in fetal and adult plantar epidermis. Differentiation. 1984;28:136–54.

    Article  PubMed  CAS  Google Scholar 

  9. Moll I, Kuhn C, Moll R. Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. J Invest Dermatol. 1995;104:910–5.

    Article  PubMed  CAS  Google Scholar 

  10. Salomon D, Carraux P, Mérot Y, Saurat JH. Pathway of granule formation in Merkel cells: an ultrastructural study. J Invest Dermatol. 1987;89:362–5.

    Article  PubMed  CAS  Google Scholar 

  11. Merkel F. Tastzellen und Tastkorperchen bei den Hausthieren und beim Menschen. Archiv für mikroskopische Anatomie. 1875;11:636–52.

    Article  Google Scholar 

  12. Ranvier L. De la terminaison des nerfs dans le corpuscles du tact. Comptes Rendus de l’Académie des Sciences. 1877;85:1020–30.

    Google Scholar 

  13. Botezat E. Die Nerven der Epidermis. Anat Anz. 1908;33:45.

    Google Scholar 

  14. Whitear M. Merkel cells in lower vertebrates. Arch Histol Cytol. 1989;52(Suppl):415–22.

    Article  PubMed  Google Scholar 

  15. Lane EB, Whitear M. On the occurrence of Merkel cells in the epidermis of teleost fishes. Cell Tissue Res. 1977;182:235–46.

    PubMed  CAS  Google Scholar 

  16. Iggo A, Muir AR. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol. 1969;200:763–96.

    PubMed  CAS  Google Scholar 

  17. Hartschuh W, Weihe E. Fine structural analysis of the synaptic junction of Merkel cell-axon-complexes. J Invest Dermatol. 1980;75:159–65.

    Article  PubMed  CAS  Google Scholar 

  18. Pinkus F. Uber einen bisher unbekannten Nebenapparat am Haarsystem des Menschen: Haarscheiben. Dermatol Zeitschr. 1902;9:465–9.

    Article  Google Scholar 

  19. Kawamura T, Nishiyama S, Ikeda S, Tajima K. The human haarscheibe, its structure and function. J Invest Dermatol. 1964;42:87–90.

    PubMed  CAS  Google Scholar 

  20. Halata Z. The mechanoreceptors of the mammalian skin ultrastructure and morphological classification. Adv Anat Embryol Cell Biol. 1975;50:3–77.

    PubMed  CAS  Google Scholar 

  21. Narisawa Y, Hashimoto K, Kohda H. Merkel cells of the terminal hair follicle of the adult human scalp. J Invest Dermatol. 1994;102:506–10.

    Article  PubMed  CAS  Google Scholar 

  22. Santa Cruz DJ, Bauer EA. Merkel cells in the outer follicular sheath. Ultrastruct Pathol. 1982;3:59–63.

    Article  PubMed  CAS  Google Scholar 

  23. Munger BL, Pubols LM, Pubols BH. The Merkel rete papilla—a slowly adapting sensory receptor in mammalian glabrous skin. Brain Res. 1971;29:47–61.

    Article  PubMed  CAS  Google Scholar 

  24. Mahrle G, Orfanos CE. Merkel cells as human cutaneous neuroreceptor cells. Their presence in dermal neural corpuscles and in the external hair root sheath of human adult skin. Arch Dermatol Forsch. 1974;251:19–26.

    Article  PubMed  CAS  Google Scholar 

  25. Moll I, Bladt U, Jung EG. Presence of Merkel cells in sun-exposed and not sun-exposed skin: a quantitative study. Arch Dermatol Res. 1990;282:213–6.

    Article  PubMed  CAS  Google Scholar 

  26. Hashimoto K. Fine structure of Merkel cell in human oral mucosa. J Invest Dermatol. 1972;58:381–7.

    Article  PubMed  CAS  Google Scholar 

  27. Frankenhauser B. Impulses from a cutaneous receptor with slow adaptation and low mechanical threshold. Acta Physiol Scand. 1949;18:68–74.

    Article  Google Scholar 

  28. Goodwin AW, Macefield VG, Bisley JW. Encoding of object curvature by tactile afferents from human fingers. J Neurophysiol. 1997;78:2881–8.

    PubMed  CAS  Google Scholar 

  29. LaMotte RH, Srinivasan MA, Lu C, Klusch-Petersen A. Cutaneous neural codes for shape. Can J Physiol Pharmacol. 1994;72:498–505.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshioka T, Gibb B, Dorsch AK, Hsiao SS, Johnson KO. Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J Neurosci. 2001;21:6905–16.

    PubMed  CAS  Google Scholar 

  31. Johnson KO, Lamb GD. Neural mechanisms of spatial tactile discrimination: neural patterns evoked by braille-like dot patterns in the monkey. J Physiol. 1981;310:117–44.

    PubMed  CAS  Google Scholar 

  32. Maricich SM et al. Merkel cells are essential for light-touch responses. Science. 2009;324:1580–2.

    Article  PubMed  CAS  Google Scholar 

  33. Haeberle H et al. Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci U S A. 2004;101:14503–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gottschaldt KM, Vahle-Hinz C. Merkel cell receptors: structure and transducer function. Science. 1981;214:183–6.

    Article  PubMed  CAS  Google Scholar 

  35. Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci. 2011;12:139–53.

    Article  PubMed  CAS  Google Scholar 

  36. Hartschuh W, Weihe E, Yanaihara N, Reinecke M. Immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in Merkel cells of various mammals: evidence for a neuromodulator function of the Merkel cell. J Invest Dermatol. 1983;81:361–4.

    Article  PubMed  CAS  Google Scholar 

  37. Chew SB, Leung PY. Immunocytochemical evidence of a met-enkephalin-like substance in the dense-core granules of mouse Merkel cells. Cell Tissue Res. 1991;265:611–4.

    Article  PubMed  CAS  Google Scholar 

  38. Fantini F, Johansson O. Neurochemical markers in human cutaneous Merkel cells. An immunohistochemical investigation. Exp Dermatol. 1995;4:365–71.

    Article  PubMed  CAS  Google Scholar 

  39. English KB et al. Serotonin-like immunoreactivity in Merkel cells and their afferent neurons in touch domes from the hairy skin of rats. Anat Rec. 1992;232:112–20.

    Article  PubMed  CAS  Google Scholar 

  40. García-Caballero T, Gallego R, Rosón E, Fraga M, Beiras A. Calcitonin gene-related peptide (CGRP) immunoreactivity in the neuroendocrine Merkel cells and nerve fibres of pig and human skin. Histochemistry. 1989;92:127–32.

    Article  PubMed  Google Scholar 

  41. Hartschuh W, Weihe E, Yanaihara N. Immunohistochemical analysis of chromogranin A and multiple peptides in the mammalian Merkel cell: further evidence for its paraneuronal function? Arch Histol Cytol. 1989;52(Suppl):423–31.

    Article  PubMed  Google Scholar 

  42. Alvarez FJ et al. Immunocytochemical analysis of calcitonin gene-related peptide and vasoactive intestinal polypeptide in Merkel cells and cutaneous free nerve endings of cats. Cell Tissue Res. 1988;254:429–37.

    Article  PubMed  CAS  Google Scholar 

  43. Boulais N et al. Merkel cells as putative regulatory cells in skin disorders: an in vitro study. PLoS One. 2009;4:9.

    Google Scholar 

  44. Casasco A et al. Immunocytochemical labelling of Merkel cells of human oral mucosa by means of antibodies to protein gene product 9.5. Bull Group Int Rech Sci Stomatol Odontol. 1990;33:61–4.

    PubMed  CAS  Google Scholar 

  45. Gu J, Polak JM, Tapia FJ, Marangos PJ, Pearse AG. Neuron-specific enolase in the Merkel cells of mammalian skin. The use of specific antibody as a simple and reliable histologic marker. Am J Pathol. 1981;104:63–8.

    PubMed  CAS  Google Scholar 

  46. Ortonne JP et al. Normal Merkel cells express a synaptophysin-like immunoreactivity. Dermatologica. 1988;177:1–10.

    Article  PubMed  CAS  Google Scholar 

  47. Winkelmann RK. The Merkel cell system and a comparison between it and the neurosecretory or APUD cell system. J Invest Dermatol. 1977;69:41–6.

    Article  PubMed  CAS  Google Scholar 

  48. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–8.

    Article  PubMed  CAS  Google Scholar 

  49. Seiffert K, Granstein RD. Neuroendocrine regulation of skin dendritic cells. Ann N Y Acad Sci. 2006;1088:195–206.

    Article  PubMed  CAS  Google Scholar 

  50. Scholzen T et al. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol. 1998;7:81–96.

    Article  PubMed  CAS  Google Scholar 

  51. Hosoi J et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363:159–63.

    Article  PubMed  CAS  Google Scholar 

  52. Yu X-J, Li C-Y, Xu Y-H, Chen L-M, Zhou C-L. Calcitonin gene-related peptide increases proliferation of human HaCaT keratinocytes by activation of MAP kinases. Cell Biol Int. 2009;33:1144–8.

    Article  PubMed  CAS  Google Scholar 

  53. Talme T, Liu Z, Sundqvist K-G. The neuropeptide calcitonin gene-related peptide (CGRP) stimulates T cell migration into collagen matrices. J Neuroimmunol. 2008;196:60–6.

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka T, Danno K, Ikai K, Imamura S. Effects of substance P and substance K on the growth of cultured keratinocytes. J Invest Dermatol. 1988;90:399–401.

    Article  PubMed  CAS  Google Scholar 

  55. Payan DG, Brewster DR, Goetzl EJ. Specific ­stimulation of human T lymphocytes by substance P. J Immunol. 1983;131:1613–5.

    PubMed  CAS  Google Scholar 

  56. Farber EM, Nickoloff BJ, Recht B, Fraki JE. Stress, symmetry, and psoriasis: possible role of neuropeptides. J Am Acad Dermatol. 1986;14:305–11.

    Article  PubMed  CAS  Google Scholar 

  57. Saraceno R, Kleyn CE, Terenghi G, Griffiths CEM. The role of neuropeptides in psoriasis. Br J Dermatol. 2006;155:876–82.

    Article  PubMed  CAS  Google Scholar 

  58. Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol. 2011;131:1530–8.

    Article  PubMed  CAS  Google Scholar 

  59. Moll I, Moll R, Franke WW. Formation of epidermal and dermal Merkel cells during human fetal skin development. J Invest Dermatol. 1986;87:779–87.

    Article  PubMed  CAS  Google Scholar 

  60. Kim D-K, Holbrook KA. The appearance, density, and distribution of Merkel cells in human embryonic and fetal skin: their relation to sweat gland and hair follicle development. J Invest Dermatol. 1995;104:411–6.

    Article  PubMed  CAS  Google Scholar 

  61. Vaigot P, Pisani A, Darmon YM, Ortonne JP. The majority of epidermal Merkel cells are non-proliferative: a quantitative immunofluorescence analysis. Acta Derm Venereol. 1987;67(6):517–20.

    PubMed  CAS  Google Scholar 

  62. Moll I, Zieger W, Schmelz M. Proliferative Merkel cells were not detected in human skin. Arch Dermatol Res. 1996;288:184–7.

    Article  PubMed  CAS  Google Scholar 

  63. Tachibana T, Fujiwara N, Nawa T. Postnatal differentiation of Merkel cells in the rat palatine mucosa, with special reference to the timing of peripheral nerve development and the potency of cell mitosis. Anat Embryol. 2000;202:359–67.

    Article  PubMed  CAS  Google Scholar 

  64. Fradette J et al. Normal human Merkel cells are ­present in epidermal cell populations isolated and cultured from glabrous and hairy skin sites. J Invest Dermatol. 2003;120:313–7.

    Article  PubMed  CAS  Google Scholar 

  65. Nakafusa J et al. Changes in the number of Merkel cells with the hair cycle in hair discs on rat back skin. Br J Dermatol. 2006;155:883–9.

    Article  PubMed  CAS  Google Scholar 

  66. Nurse CA, Macintyre L, Diamond J. Reinnervation of the rat touch dome restores the Merkel cell population reduced after denervation. Neuroscience. 1984;13:563–71.

    Article  PubMed  CAS  Google Scholar 

  67. Grim M, Halata Z. Developmental origin of avian Merkel cells. Anat Embryol. 2000;202:401–10.

    Article  PubMed  CAS  Google Scholar 

  68. Ochiai T, Suzuki H. Fine structural and morphometric studies of the Merkel cell during fetal and postnatal development. J Invest Dermatol. 1981;77:437–43.

    Article  PubMed  CAS  Google Scholar 

  69. Moll I, Lane AT, Franke WW, Moll R. Intraepidermal formation of Merkel cells in xenografts of human fetal skin. J Invest Dermatol. 1990;94:359–64.

    Article  PubMed  CAS  Google Scholar 

  70. Szeder V, Grim M, Halata Z, Sieber-Blum M. Neural crest origin of mammalian Merkel cells. Dev Biol. 2003;253:258–63.

    Article  PubMed  CAS  Google Scholar 

  71. Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM. Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol. 2009;336:76–83.

    Article  PubMed  CAS  Google Scholar 

  72. Van Keymeulen A et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol. 2009;187:91–100.

    Article  PubMed  CAS  Google Scholar 

  73. Toker C. Trabecular carcinoma of the skin. Arch Dermatol. 1972;105:107–10.

    Article  PubMed  CAS  Google Scholar 

  74. Lewis KG, Weinstock MA, Weaver AL, Otley CC. Adjuvant local irradiation for Merkel cell carcinoma. Arch Dermatol. 2006;142:693–700.

    Article  PubMed  Google Scholar 

  75. O’Connor WJ, Roenigk RK, Brodland DG. Merkel cell carcinoma. Comparison of Mohs micrographic surgery and wide excision in eighty-six patients. Dermatol Surg. 1997;23:929–33.

    Article  PubMed  Google Scholar 

  76. Yiengpruksawan A, Coit DG, Thaler HT, Urmacher C, Knapper WK. Merkel cell carcinoma: prognosis and management. Arch Surg. 1991;126:1514–9.

    Article  PubMed  CAS  Google Scholar 

  77. Akhtar S, Oza KK, Wright J. Merkel cell carcinoma: report of 10 cases and review of the literature. J Am Acad Dermatol. 2000;43:755–67.

    Article  PubMed  CAS  Google Scholar 

  78. Allen PJ et al. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol. 2005;23:2300–9.

    Article  PubMed  Google Scholar 

  79. Ziprin P, Smith S, Salerno G, Rosin RD. Two cases of Merkel cell tumour arising in patients with chronic lymphocytic leukaemia. Br J Dermatol. 2000;142:525–8.

    Article  PubMed  CAS  Google Scholar 

  80. Engels EA, Frisch M, Goedert JJ, Biggar RJ, Miller RW. Merkel cell carcinoma and HIV infection. Lancet. 2002;359:497–8.

    Article  PubMed  Google Scholar 

  81. Penn I, First MR. Merkel’s cell carcinoma in organ recipients: report of 41 cases. Transplantation. 1999;68:1717–21.

    Article  PubMed  CAS  Google Scholar 

  82. Gould VE, Moll R, Moll I, Lee I, Franke WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias, and neoplasms. Lab Invest. 1985;52:334–53.

    PubMed  CAS  Google Scholar 

  83. Sidhu GS et al. Merkel cell neoplasms. Histology, electron microscopy, biology, and histogenesis. Am J Dermatopathol. 1980;2:101–19.

    Article  PubMed  CAS  Google Scholar 

  84. Tang CK, Toker C. Trabecular carcinoma of the skin: an ultrastructural study. Cancer. 1978;42:2311–21.

    Article  PubMed  CAS  Google Scholar 

  85. Llombart B et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology. 2005;46:622–34.

    Article  PubMed  CAS  Google Scholar 

  86. Moll I et al. Establishment and characterization of two Merkel cell tumor cultures. J Invest Dermatol. 1994;102:346–53.

    Article  PubMed  CAS  Google Scholar 

  87. Wick MR et al. Primary neuroendocrine carcinomas of the skin (Merkel cell tumors). a clinical, histologic, and ultrastructural study of thirteen cases. Am J Clin Pathol. 1983;79:6–13.

    PubMed  CAS  Google Scholar 

  88. Furuno K, Wakakura M, Shimizu K, Iwabuchi K, Kameya T. Immunohistochemical studies of Merkel cell carcinoma of the eyelid. Jpn J Ophthalmol. 1992;36:348–55.

    PubMed  CAS  Google Scholar 

  89. Visscher D, Cooper PH, Zarbo RJ, Crissman JD. Cutaneous neuroendocrine (Merkel cell) carcinoma: an immunophenotypic, clinicopathologic, and flow cytometric study. Mod Pathol. 1989;2:331–8.

    PubMed  CAS  Google Scholar 

  90. Gu J et al. Immunostaining of neuron-specific enolase as a diagnostic tool for Merkel cell tumors. Cancer. 1983;52:1039–43.

    Article  PubMed  CAS  Google Scholar 

  91. Green WR, Linnoila RI, Triche TJ. Neuroendocrine carcinoma of skin with simultaneous cytokeratin expression. Ultrastruct Pathol. 1984;6:141–52.

    Article  PubMed  CAS  Google Scholar 

  92. Leong AS, Phillips GE, Pieterse AS, Milios J. Criteria for the diagnosis of primary endocrine carcinoma of the skin (Merkel cell carcinoma). A histological, immunohistochemical and ultrastructural study of 13 cases. Pathology. 1986;18:393–9.

    Article  PubMed  CAS  Google Scholar 

  93. Narisawa Y, Hashimoto K, Kohda H. Immunohistochemical demonstration of the expression of neurofilament proteins in Merkel cells. Acta Derm Venereol. 1994;74:441–3.

    PubMed  CAS  Google Scholar 

  94. Moll R, Löwe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992;140:427–47.

    PubMed  CAS  Google Scholar 

  95. Van Gele M et al. Gene-expression profiling reveals distinct expression patterns for classic versus variant Merkel cell phenotypes and new classifier genes to distinguish Merkel cell from small-cell lung carcinoma. Oncogene. 2004;23:2732–42.

    Article  PubMed  CAS  Google Scholar 

  96. Heiskala K, Arola J, Heiskala M, Andersson LC. Expression of Reg IV and Hath1 in neuroendocrine neoplasms. Histol Histopathol. 2010;25:63–72.

    PubMed  CAS  Google Scholar 

  97. Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science. 2009;326:1424–7.

    Article  PubMed  CAS  Google Scholar 

  98. Bossuyt W et al. Atonal homolog 1 is a tumor suppressor gene. PLoS Biol. 2009;7:e39.

    Article  PubMed  CAS  Google Scholar 

  99. Agelli M, Clegg LX. Epidemiology of primary Merkel cell carcinoma in the United States. J Am Acad Dermatol. 2003;49:832–41.

    Article  PubMed  Google Scholar 

  100. Paulson KG, Iyer JG, Nghiem P. Asymmetric lateral distribution of melanoma and Merkel cell carcinoma in the United States. J Am Acad Dermatol. 2011;65:35–9.

    Article  PubMed  Google Scholar 

  101. Lunder EJ, Stern RS. Merkel-cell carcinomas in patients treated with methoxsalen and ultraviolet A radiation. N Engl J Med. 1998;339:1247–8.

    Article  PubMed  CAS  Google Scholar 

  102. Stern RS, Lunder EJ. Risk of squamous cell carcinoma and methoxsalen (psoralen) and UV-A radiation (PUVA). A meta-analysis. Arch Dermatol. 1998;134:1582–5.

    Article  PubMed  CAS  Google Scholar 

  103. Stern RS. The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol. 2001;44:755–61.

    Article  PubMed  CAS  Google Scholar 

  104. Popp S, Waltering S, Herbst C, Moll I, Boukamp P. UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer. 2002;99:352–60.

    Article  PubMed  CAS  Google Scholar 

  105. Pleasance ED et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.

    Article  PubMed  CAS  Google Scholar 

  106. Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol. 2011;90:560–4.

    Article  PubMed  CAS  Google Scholar 

  107. Paulson KG et al. Array-CGH reveals recurrent genomic changes in Merkel cell carcinoma including amplification of L-Myc. J Invest Dermatol. 2009;129:1547–55.

    Article  PubMed  CAS  Google Scholar 

  108. Van Gele M, Speleman F, Vandesompele J, Van Roy N, Leonard JH. Characteristic pattern of chromosomal gains and losses in Merkel cell carcinoma detected by comparative genomic hybridization. Cancer Res. 1998;58:1503–8.

    PubMed  Google Scholar 

  109. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell. 1991;65:1053–61.

    Article  PubMed  CAS  Google Scholar 

  110. Cao L et al. Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature. 1992;355:176–9.

    Article  PubMed  CAS  Google Scholar 

  111. Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA. Cell cycle-specific association of E2F with the p130 E1A-binding protein. Genes Dev. 1993;7:2392–404.

    Article  PubMed  CAS  Google Scholar 

  112. Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev. 1992;6:177–85.

    Article  PubMed  CAS  Google Scholar 

  113. Bandara LR, Adamczewski JP, Hunt T, La Thangue NB. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature. 1991;352:249–51.

    Article  PubMed  CAS  Google Scholar 

  114. Harbour JW et al. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science. 1988;241:353–7.

    Article  PubMed  CAS  Google Scholar 

  115. DeCaprio JA et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.

    Article  PubMed  CAS  Google Scholar 

  116. Leonard JH, Hayard N. Loss of heterozygosity of chromosome 13 in Merkel cell carcinoma. Genes Chromosomes Cancer. 1997;20:93–7.

    Article  PubMed  CAS  Google Scholar 

  117. Yu J, Ustach C, Kim H-RC. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol. 2003;36:49–59.

    Article  PubMed  CAS  Google Scholar 

  118. Kartha RV, Sundram UN. Silent mutations in KIT and PDGFRA and coexpression of receptors with SCF and PDGFA in Merkel cell carcinoma: implications for tyrosine kinase-based tumorigenesis. Mod Pathol. 2008;21:96–104.

    PubMed  CAS  Google Scholar 

  119. Swick BL, Ravdel L, Fitzpatrick JE, Robinson WA. Platelet-derived growth factor receptor alpha mutational status and immunohistochemical expression in Merkel cell carcinoma: implications for treatment with imatinib mesylate. J Cutan Pathol. 2008;35:197–202.

    PubMed  Google Scholar 

  120. Davies H et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  121. Houben R et al. Absence of classical MAP kinase pathway signalling in Merkel cell carcinoma. J Invest Dermatol. 2006;126:1135–42.

    Article  PubMed  CAS  Google Scholar 

  122. Houben R et al. Activation of the MAP kinase pathway induces apoptosis in the Merkel cell carcinoma cell line UISO. J Invest Dermatol. 2007;127:2116–22.

    Article  PubMed  CAS  Google Scholar 

  123. Franke TF et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727–36.

    Article  PubMed  CAS  Google Scholar 

  124. Kazlauskas A, Cooper JA. Phosphorylation of the PDGF receptor beta subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J. 1990;9:3279–86.

    PubMed  CAS  Google Scholar 

  125. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  PubMed  CAS  Google Scholar 

  126. Tsujimoto Y et al. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature. 1985;315:340–3.

    Article  PubMed  CAS  Google Scholar 

  127. McDonnell TJ et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989;57:79–88.

    Article  PubMed  CAS  Google Scholar 

  128. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985;228:1440–3.

    Article  PubMed  CAS  Google Scholar 

  129. Feinmesser M et al. Expression of the apoptosis-related oncogenes bcl-2, bax, and p53 in Merkel cell carcinoma: can they predict treatment response and clinical outcome? Hum Pathol. 1999;30:1367–72.

    Article  PubMed  CAS  Google Scholar 

  130. Kennedy MM, Blessing K, King G, Kerr KM. Expression of bcl-2 and p53 in Merkel cell carcinoma. An immunohistochemical study. Am J Dermatopathol. 1996;18:273–7.

    Article  PubMed  CAS  Google Scholar 

  131. Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348:334–6.

    Article  PubMed  CAS  Google Scholar 

  132. Martinou JC et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994;13:1017–30.

    Article  PubMed  CAS  Google Scholar 

  133. Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214–5.

    Article  PubMed  CAS  Google Scholar 

  134. Schlagbauer-Wadl H et al. Bcl-2 antisense oligonucleotides (G3139) inhibit Merkel cell carcinoma growth in SCID mice. J Invest Dermatol. 2000;114:725–30.

    Article  PubMed  CAS  Google Scholar 

  135. Shah MH et al. G3139 (Genasense) in patients with advanced Merkel cell carcinoma. Am J Clin Oncol. 2009;32:174–9.

    Article  PubMed  CAS  Google Scholar 

  136. Emens LA. Survivin’ cancer. Cancer Biol Ther. 2004;3:180–3.

    PubMed  CAS  Google Scholar 

  137. Kim J, McNiff JM. Nuclear expression of survivin portends a poor prognosis in Merkel cell carcinoma. Mod Pathol. 2008;21:764–9.

    Article  PubMed  CAS  Google Scholar 

  138. Tucci MG et al. Immunohistochemical study of apoptosis markers and involvement of chemokine CXCR4 in skin Merkel cell carcinoma. J Eur Acad Dermatol Venereol. 2006;20:1220–5.

    Article  PubMed  CAS  Google Scholar 

  139. Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006;209:13–20.

    Article  PubMed  CAS  Google Scholar 

  140. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  PubMed  CAS  Google Scholar 

  141. Donehower LA et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    Article  PubMed  CAS  Google Scholar 

  142. Ito A et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001;20:1331–40.

    Article  PubMed  CAS  Google Scholar 

  143. Onel K, Cordon-Cardo C. MDM2 and prognosis. Mol Cancer Res. 2004;2:1–8.

    PubMed  CAS  Google Scholar 

  144. Hurt EM, Thomas SB, Peng B, Farrar WL. Reversal of p53 epigenetic silencing in multiple myeloma permits apoptosis by a p53 activator. Cancer Biol Ther. 2006;5:1154–60.

    PubMed  CAS  Google Scholar 

  145. Bueso-Ramos CE et al. The human MDM-2 oncogene is overexpressed in leukemias. Blood. 1993;82:2617–23.

    PubMed  CAS  Google Scholar 

  146. Lassacher A, Heitzer E, Kerl H, Wolf P. p14ARF hypermethylation is common but INK4a-ARF locus or p53 mutations are rare in Merkel cell carcinoma. J Invest Dermatol. 2008;128:1788–96.

    Article  PubMed  CAS  Google Scholar 

  147. Lill C et al. P53 mutation is a rare event in Merkel cell carcinoma of the head and neck. Eur Arch Otorhinolaryngol. 2011;268:1639–46.

    Article  PubMed  Google Scholar 

  148. Van Gele M et al. Combined karyotyping. CGH and M-FISH analysis allows detailed characterization of unidentified chromosomal rearrangements in Merkel cell carcinoma. Int J Cancer. 2002;101:137–45.

    Article  PubMed  CAS  Google Scholar 

  149. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    Article  PubMed  CAS  Google Scholar 

  150. Fauquet CM. Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Virus Res. 2005;83:221–2.

    Google Scholar 

  151. Stewart AR, Lednicky JA, Butel JS. Sequence analyses of human tumor-associated SV40 DNAs and SV40 viral isolates from monkeys and humans. J Neurovirol. 1998;4:182–93.

    Article  PubMed  CAS  Google Scholar 

  152. Moens U, Ludvigsen M, Van Ghelue M. Human polyomaviruses in skin diseases. Patholog Res Int. 2011;2011:123491.

    PubMed  Google Scholar 

  153. Diamandopoulos GT. Leukemia, lymphoma, and osteosarcoma induced in the Syrian golden hamster by simian virus 40. Science. 1972;176:173–5.

    Article  PubMed  CAS  Google Scholar 

  154. Walker DL, Padgett BL, ZuRhein GM, Albert AE, Marsh RF. Human papovavirus (JC): induction of brain tumors in hamsters. Science. 1973;181:674–6.

    Article  PubMed  CAS  Google Scholar 

  155. Shah KV, Daniel RW, Strandberg JD. Sarcoma in a hamster inoculated with BK virus, a human papovavirus. J Natl Cancer Inst. 1975;54:945–50.

    PubMed  CAS  Google Scholar 

  156. Shuda M et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A. 2008;105:16272–7.

    Article  PubMed  CAS  Google Scholar 

  157. Becker JC et al. MC polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol. 2009;129:248–50.

    Article  PubMed  CAS  Google Scholar 

  158. Kassem A et al. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res. 2008;68:5009–13.

    Article  PubMed  CAS  Google Scholar 

  159. Garneski KM et al. Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol. 2009;129:246–8.

    Article  PubMed  CAS  Google Scholar 

  160. Shuda M et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer. 2009;125:1243–9.

    Article  PubMed  CAS  Google Scholar 

  161. Reisinger DM, Shiffer JD, Cognetta AB, Chang Y, Moore PS. Lack of evidence for basal or squamous cell carcinoma infection with Merkel cell polyomavirus in immunocompetent patients with Merkel cell carcinoma. J Am Acad Dermatol. 2010;63:400–3.

    Article  PubMed  Google Scholar 

  162. Paulson KG et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients. Cancer Res. 2010;70:8388–97.

    Article  PubMed  CAS  Google Scholar 

  163. Laude HC et al. Distinct Merkel cell polyomavirus molecular features in tumour and Non tumour specimens from patients with Merkel cell carcinoma. PLoS Pathog. 2010;6:9.

    Article  CAS  Google Scholar 

  164. Small MB, Gluzman Y, Ozer HL. Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature. 1982;296:671–2.

    Article  PubMed  CAS  Google Scholar 

  165. Israel MA, Vanderryn DF, Meltzer ML, Martin MA. Characterization of polyoma viral DNA sequences in polyoma-induced hamster tumor cell lines. J Biol Chem. 1980;255:3798–805.

    PubMed  CAS  Google Scholar 

  166. Kean JM, Rao S, Wang M, Garcea RL. Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009;5:e1000363.

    Article  PubMed  CAS  Google Scholar 

  167. Pastrana DV et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog. 2009;5:e1000578.

    Article  PubMed  CAS  Google Scholar 

  168. Schrama D et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J Invest Dermatol. 2011;131:1631–8.

    Article  PubMed  CAS  Google Scholar 

  169. Asioli S et al. Expression of p63 is the sole independent marker of aggressiveness in localised (stage I-II) Merkel cell carcinomas. Mod Pathol. 2011;24:1451–61.

    Article  PubMed  CAS  Google Scholar 

  170. Fischer N, Brandner J, Fuchs F, Moll I, Grundhoff A. Detection of Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma cell lines: cell morphology and growth phenotype do not reflect presence of the virus. Int J Cancer. 2010;126:2133–42.

    PubMed  CAS  Google Scholar 

  171. Sihto H et al. Merkel cell polyomavirus infection, large T antigen. Retinoblastoma protein and outcome in Merkel cell carcinoma. Clin Cancer Res. 2011;17:4806–13.

    Article  PubMed  CAS  Google Scholar 

  172. Houben R et al. Comparable expression and phosphorylation of the retinoblastoma protein in Merkel cell polyoma virus-positive and negative Merkel cell carcinoma. Int J Cancer. 2010;126:796–8.

    Article  PubMed  CAS  Google Scholar 

  173. Altstein AD, Vassiljeva NN, Sarycheva OF. Neoplastic transformation of rat embryo cells by simian papovavirus SV40. Nature. 1967;213:931–2.

    Article  PubMed  CAS  Google Scholar 

  174. Linzer DI, Levine AJ. Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52.

    Article  PubMed  CAS  Google Scholar 

  175. Kaplan DR et al. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell. 1987;50:1021–9.

    Article  PubMed  CAS  Google Scholar 

  176. Johnson EM. Structural evaluation of new human polyomaviruses provides clues to pathobiology. Trends Microbiol. 2010;18:215–23.

    Article  PubMed  CAS  Google Scholar 

  177. Chang LS, Pan S, Pater MM, Di Mayorca G. Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology. 1985;146:246–61.

    Article  PubMed  CAS  Google Scholar 

  178. Houben R et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol. 2010;84:7064–72.

    Article  PubMed  CAS  Google Scholar 

  179. Houben R et al. An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer. 2011. doi:10.1002/ijc.26076.

  180. Stubdal H, Zalvide J, DeCaprio JA. Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J Virol. 1996;70:2781–8.

    PubMed  CAS  Google Scholar 

  181. Stubdal H et al. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol. 1997;17:4979–90.

    PubMed  CAS  Google Scholar 

  182. O’Reilly DR. p53 and transformation by SV40. Biol Cell. 1986;57:187–96.

    Article  PubMed  Google Scholar 

  183. Cho S, Tian Y, Benjamin TL. Binding of p300/CBP co-activators by polyoma large T antigen. J Biol Chem. 2001;276:33533–9.

    Article  PubMed  CAS  Google Scholar 

  184. Hein J et al. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol. 2009;83:117–27.

    Article  PubMed  CAS  Google Scholar 

  185. Bhatia K, Goedert JJ, Modali R, Preiss L, Ayers LW. Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression. Int J Cancer. 2010;126:2240–6.

    PubMed  CAS  Google Scholar 

  186. Sáenz-Robles MT, Sullivan CS, Pipas JM. Transforming functions of Simian Virus 40. Oncogene. 2001;20:7899–907.

    Article  PubMed  Google Scholar 

  187. Yu J, Boyapati A, Rundell K. Critical role for SV40 small-t antigen in human cell transformation. Virology. 2001;290:192–8.

    Article  PubMed  CAS  Google Scholar 

  188. Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest. 2011. doi:10.1172/JCI46323.

  189. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15:658–64.

    PubMed  CAS  Google Scholar 

  190. She Q-B et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18:39–51.

    Article  PubMed  CAS  Google Scholar 

  191. Pallas DC et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990;60:167–76.

    Article  PubMed  CAS  Google Scholar 

  192. Rodriguez-Viciana P, Collins C, Fried M. Polyoma and SV40 proteins differentially regulate PP2A to activate distinct cellular signaling pathways involved in growth control. Proc Natl Acad Sci U S A. 2006;103:19290–5.

    Article  PubMed  CAS  Google Scholar 

  193. Liu X et al. Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human VAM6P to the nucleus. J Biol Chem. 2011;286:17079–90.

    Article  PubMed  CAS  Google Scholar 

  194. Seo GJ, Chen CJ, Sullivan CS. Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology. 2009;383:183–7.

    Article  PubMed  CAS  Google Scholar 

  195. Lee S et al. Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in human Merkel cell carcinomas. J Clin Virol. 2011;52:272–5.

    Article  PubMed  CAS  Google Scholar 

  196. Umbach JL et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 2008;454:780–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Michael Maricich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ostrowski, S.M., Maricich, S.M. (2013). Basic Science of the Merkel Cell. In: Alam, M., Bordeaux, J., Yu, S. (eds) Merkel Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6608-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6608-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6607-9

  • Online ISBN: 978-1-4614-6608-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics