Skip to main content

Serum Muscle Enzymes in Neuromuscular Disease

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

The serum enzymes most clinically relevant in neuromuscular diseases include creatine kinase, lactate dehydrogenase, aminotransferases, aldolase, carbonic anhydrase III, pyruvate kinase, and enolase. In this chapter, we will focus primarily on serum creatine kinase but will also discuss the other enzymes encountered in muscle diseases and their clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. Philadelphia: Elsevier/Saunders; 2011.

    Google Scholar 

  2. El-Metwally TH, El-Senosil YA. Medical enzymology. New York: Nova science; 2010.

    Google Scholar 

  3. Bais R, Edwards JB. Creatine kinase. CRC Crit Rev Clin Lab Sci. 1982;16(4):291–335.

    Article  CAS  Google Scholar 

  4. Lott JA, Landesman PW. The enzymology of skeletal muscle disorders. CRC Crit Rev Clin Lab Sci. 1984;20(2):153–90.

    Article  CAS  Google Scholar 

  5. Hinderks GJ, Frohlich J. Low serum creatine kinase values associated with administration of steroids. Clin Chem. 1979;25(12):2050–1.

    PubMed  CAS  Google Scholar 

  6. Wei N, Pavlidis N, Tsokos G, et al. Clinical significance of low creatine phosphokinase values in patients with connective tissue disease. JAMA. 1981;246(17):1921–3.

    Article  PubMed  CAS  Google Scholar 

  7. Lang H, Wurzburg U. Creatine kinase, an enzyme of many forms. Clin Chem. 1982;28:1439–47.

    PubMed  CAS  Google Scholar 

  8. Lott JA, Stang JM. Differential diagnosis of patients with abnormal creatine kinase isoenzymes. Clin Lab Med. 1989;9:627–42.

    PubMed  CAS  Google Scholar 

  9. Nanji AA. Serum creatine kinase isoenzymes: a review. Muscle Nerve. 1983;6:83–90.

    Article  PubMed  CAS  Google Scholar 

  10. Takagi Y, Yasuhara T, Gomi K. Creatine kinase and its isozymes. Rinsho Byori. 2001;49 Suppl 116Suppl 116:52–61.

    Google Scholar 

  11. Lee KN, Csako G, Bernhardt P, Elin RJ. Relevance of macro creatine kinase type 1 and type 2 isoenzymes to laboratory and clinical data. Clin Chem. 1994;40(7):1278–83.

    PubMed  CAS  Google Scholar 

  12. Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum enzyme monitoring in sports medicine. Clin Sports Med. 2008;27:1–18.

    Article  PubMed  Google Scholar 

  13. Wu AH, Herson VC, Bowers GN. Macro creatine kinase types 1 and 2: clinical significance in neonates and children as compared with adults. Clin Chem. 1983;29(1):201–4.

    PubMed  CAS  Google Scholar 

  14. Stadhouders AM, Jap PM, Winkler HP, et al. Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci USA. 1994;91:5089–93.

    Article  PubMed  CAS  Google Scholar 

  15. Samuels MA. Cardiopulmonary aspects of acute neurologic diseases. In: Ropper AH, editor. Neurological and neurosurgical intensive care. 3rd ed. New York: Raven; 1993. p. 103–19.

    Google Scholar 

  16. Longstreth Jr WT, Clayson KJ, Chandler WL, Sumi SM. Cerebrospinal fluid creatine kinase activity after cardiac arrest. Neurology. http://www.ncbi.nlm.nih.gov/pubmed/6539451. 1984;34:834–7.

    Article  PubMed  Google Scholar 

  17. Coplin WM, Longstreth Jr WT, Lam AM, et al. Cerebrospinal fluid creatine kinase-BB activity and outcome after subarachnoid hemorrhage. Arch Neurol. 1999;56:1348–52.

    Article  PubMed  CAS  Google Scholar 

  18. Wong ET, Cobb C, Umehara MK, et al. Heterogeneity of serum creatine kinase activity among racial and gender groups of the population. Am J Clin Pathol. 1983;79:582–6.

    PubMed  CAS  Google Scholar 

  19. Black HR, Quallich IT, Gareleck CD. Racial differences in serum CK levels. Am J Med. 1986;61:479–92.

    Article  Google Scholar 

  20. Passos-Bueno MR, Rabbi-Bortolini E, Azevêdo E. Racial effect on serum creatine-kinase: implications for estimation of heterozygosity risks for females at-risk for Duchenne dystrophy. Clin Chim Acta. 1989;179:163–8.

    Article  PubMed  CAS  Google Scholar 

  21. Meltzer HY, Holy PA. Black-white differences in serum creatine phosphokinase (CPK) activity. Clin Chim Acta. 1974;54:215–24.

    Article  PubMed  CAS  Google Scholar 

  22. Meltzer HY, Dorus E, Grunhaus L, et al. Genetic control of human plasma creatine phosphokinase activity. Clin Genet. 1978;13:321–6.

    Article  PubMed  CAS  Google Scholar 

  23. Garcia W. Elevated creatine phosphokinase levels associated with large muscle mass. Another pitfall in evaluating clinical significance of total serum CPK activity. JAMA. 1974;228(11):1395–6.

    Article  PubMed  CAS  Google Scholar 

  24. Meltzer HY. Factors affecting serum creatine phosphokinase levels in the general population: the role of race, activity and sex. Clin Chim Acta. 1971;33:165–72.

    Article  PubMed  CAS  Google Scholar 

  25. Lev EI, Tur-Kaspa I, Ashkenazy I, Reiner A, Faraggi D, Shemer J, et al. Distribution of serum creatine kinase activity in young healthy persons. Clin Chim Acta. 1999;279:107–15.

    Article  PubMed  CAS  Google Scholar 

  26. Brewster LM, Mairuhu G, Sturk A, van Montfrans GA. Distribution of creatine kinase in the general population: implications for Statin therapy. Am Heart J. 2007;154(4):655–61.

    Article  PubMed  CAS  Google Scholar 

  27. Gilboa N, Swanson JR. Serum creatine phosphokinase in normal newborns. Arch Dis Child. 1976;51:283–5.

    Article  PubMed  CAS  Google Scholar 

  28. Scheurbrandt G, Mortier W. Voluntary newborn screening for Duchenne muscular dystrophy: a nationwide pilot program in West Germany. In: Serratrice G et al., editors. Neuromuscular diseases. New York: Raven; 1984. p. 33–5.

    Google Scholar 

  29. Bundey S, Crawly JM, Edwards JH, Westhead RA. Serum creatine kinase levels in pubertal, mature, pregnant, and postmenopausal women. J Med Genet. 1979;16:117–21.

    Article  PubMed  CAS  Google Scholar 

  30. Fukutake T, Hattori T. Normalization of creatine kinase level during pregnancy in idiopathic hyperCKemia. Clin Neurol Neurosurg. 2001;103:168–70.

    Article  PubMed  CAS  Google Scholar 

  31. Noakes TD. Effects of exercise on serum enzyme activities in humans. Sports Med. 1987;4:245–67.

    Article  PubMed  CAS  Google Scholar 

  32. Fridden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense exercise in man. Int J Sports Med. 1983;4:170–6.

    Article  Google Scholar 

  33. Epstein Y. Clinical significance of serum creatine phosphokinase activity levels following exercise. Isr J Med Sci. 1995;31:698–9.

    PubMed  CAS  Google Scholar 

  34. Bijsterbosch MK, Duursma AM, Smit MJ, et al. Several dehydrogenases and kinases compete for endocytosis from plasma by rat tissues. Biochem J. 1985;229:409–17.

    PubMed  CAS  Google Scholar 

  35. Apple FS, Hellsten Y, Clarkson PM. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise. Clin Chem. 1988;34(6):1102–4.

    PubMed  CAS  Google Scholar 

  36. Apple FS, Rogers MA, Sherman WM, et al. Profile of creatine kinase isoenzymes in skeletal muscles of marathon runners. Clin Chem. 1984;30(3):413–6.

    PubMed  CAS  Google Scholar 

  37. Apple FS, Rogers MA, Sherman WM, et al. Comparison of serum creatine kinase and creatine kinase MB activities post marathon race versus post myocardial infarction. Clin Chim Acta. 1984;138:111–8.

    Article  PubMed  CAS  Google Scholar 

  38. Siegel AJ, Silverman LM, Holman BL. Elevated creatine kinase MB in marathon runners. JAMA. 1981;246:2049–53.

    Article  PubMed  CAS  Google Scholar 

  39. Newham DJ, Jones DA, Edwards RHT. Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve. 1983;6:380–5.

    Article  PubMed  CAS  Google Scholar 

  40. Newham DJ, Jones DA, Edwards RHT. Plasma creatine kinase after eccentric and concentric contractions. Muscle Nerve. 1986;9:59–63.

    Article  PubMed  CAS  Google Scholar 

  41. Hyatt JP, Clarckson PM. Creatine kinase release and clearance using MM variants following repeated bouts of eccentric exercise. Med Sci Sports Exerc. 1998;30:1059–65.

    Article  PubMed  CAS  Google Scholar 

  42. Helers GG, Ball TE, Liston L. Creatine kinase levels are elevated during 2-a-day practices in collegiate football players. J Athl Train. 2002;37:151–6.

    Google Scholar 

  43. Nosaka K, Clarkson PM, Apple FS. Time course of serum protein changes after strenuous exercise of the forearm flexors. J Lab Clin Med. 1992;119:183–8.

    PubMed  CAS  Google Scholar 

  44. Fallom KE, Sivyer G, Sivyer K, et al. The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med. 1999;33:264–9.

    Article  Google Scholar 

  45. Hortobagyi T, Denhan T. Variability in creatine kinase: methodology, exercise and clinically related factors. Int J Sports Med. 1989;10:69–80.

    Article  PubMed  CAS  Google Scholar 

  46. Garry JP, McShane JM. Postcompetition elevation of muscle enzyme levels in professional football players. MedGenMed. 2000;3(2):E4.

    Google Scholar 

  47. Karamizrak SO, Ergen E, Tore IR, et al. Changes in serum creatine kinase, lactate dehydrogenase and aldolase activities following supramaximal exercise in athletes. J Sports Med Phys Fitness. 1994;34(2):141–6.

    PubMed  CAS  Google Scholar 

  48. Shumate JB, Brooke MH, Carroll JE, et al. Increased serum creatine kinase after exercise: a sex-linked phenomenon. Neurology. 1979;29:902–4.

    Article  PubMed  CAS  Google Scholar 

  49. Griffiths PD. Serum levels of ATP: creatine phosphotransferase (creatine kinase). The normal range and effect of muscular activity. Clin Chim Acta. 1966;13:413–20.

    Article  PubMed  CAS  Google Scholar 

  50. Brooke MH, Carroll JE, Davis JE, et al. The prolonged exercise test. Neurology. 1979;29:636–43.

    Article  PubMed  CAS  Google Scholar 

  51. Koutedakis Y, Raafat A, Sharp NC, et al. Serum enzyme activities in individuals with different levels of physical fitness. J Sports Med Phys Fitness. 1993;33:252–7.

    PubMed  CAS  Google Scholar 

  52. Havas E, Komulainen J, Vihko V. Exercise-induced increase in serum creatine kinase is modified by subsequent bed rest. Int J Sports Med. 1997;18:578–82.

    Article  PubMed  CAS  Google Scholar 

  53. Margaritis I, Tessier F, Verdera F. Muscle enzyme release does not predict muscle function impairment after triathlon. J Sports Med Phys Fitness. 1999;39:133–9.

    PubMed  CAS  Google Scholar 

  54. Kratz A, Lewandrowski KB, Siegel AJ, et al. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol. 2002;118(6):856–63.

    Article  PubMed  CAS  Google Scholar 

  55. Braseth NR, Allison EJ, Gough JE. Exertional rhabdomyolysis in a body builder abusing anabolic androgenic steroids. Eur J Emerg Med. 2001;8:155–7.

    Article  PubMed  CAS  Google Scholar 

  56. Millard M, Zauner C, Cade R, Reese R, Serum CPK. Levels in male and female world class swimmers during a season of training. J Swimming Res. 1985;1:12–6.

    Google Scholar 

  57. Bruno C, Bertini E, Santorelli FM, et al. HyperCKemia as the only sign of McArdle’s disease in a child. J Child Neurol. 2000;32:209–15.

    Google Scholar 

  58. Woodman SE, Sotgia F, Galbiati F, et al. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology. 2004;62:538–43.

    Article  PubMed  CAS  Google Scholar 

  59. Carbone I, Bruno C, Sotgia F, et al. Mutations in the CAV-3 gene causes partial caviolin-3 deficiency and hyperCKemia. Neurology. 2000;54:1373–6.

    Article  PubMed  CAS  Google Scholar 

  60. Drouet A, Leturcq F, Guilloton L, et al. Muscular exercise intolerance syndrome in Becker muscular dystrophy. Presse Med. 2002;31:197–201.

    PubMed  CAS  Google Scholar 

  61. Antman EM. General hospital management. In: Julian DG, Braunwald E, editors. Management of acute myocardial infarction. London: W.B. Saunders Ltd; 1994.

    Google Scholar 

  62. Adams III J, Abendschein D, Jaffe A. Biochemical markers of myocardial injury: is MB creatine kinase the choice for the 1990s? Circulation. 1993;88:750–4.

    Article  PubMed  CAS  Google Scholar 

  63. Plebani M, Zaninotto M. Diagnostic strategies using myoglobin measurements in myocardial infarction. Clin Chim Acta. 1998;272:69–77.

    Article  PubMed  CAS  Google Scholar 

  64. Lee TH, Goldman L. Serum enzyme assays in the diagnosis of acute myocardial infarction. Ann Intern Med. 1993;88:101–6.

    Google Scholar 

  65. Silverman LM, Mendell JR, Sahenk Z, et al. Significance of creatine phosphokinase isoenzymes in Duchenne dystrophy. Neurology. 1976;26:561–4.

    Article  PubMed  CAS  Google Scholar 

  66. Somer H, Dubowitz V, Donner M. Creatine kinase isoenzymes in neuromuscular diseases. J Neurol Sci. 1976;2:129–36.

    Article  Google Scholar 

  67. Jockers-Wretou A, Grabert K, Müller E, et al. Serum creatine kinase isoenzyme pattern in nervous system atrophies and neuromuscular disorders. Clin Chim Acta. 1976;73:183–6.

    Article  PubMed  CAS  Google Scholar 

  68. Keshgegian AA, Feinberg NW. Serum creatine kinase MB isoenzyme in chronic muscle disease. Clin Chem. 1984;30:575–8.

    PubMed  CAS  Google Scholar 

  69. Mokuno K, Riku S, Sugimura K, et al. Serum creatine kinase isoenzymes in Duchenne muscular dystrophy determined by sensitive enzyme immunoassay methods. Muscle Nerve. 1987;10:459–63.

    Article  PubMed  CAS  Google Scholar 

  70. Chapelle JP. Cardiac troponin I and T: recent players in the field of myocardial markers. Clin Chem Lab Med. 1999;37:11–20.

    Article  PubMed  CAS  Google Scholar 

  71. Hamm CW. New serum markers for acute myocardial infarction. N Engl J Med. 1994;331:607–10.

    Article  PubMed  CAS  Google Scholar 

  72. Munsat TL, Baloh R, Pearson CM, et al. Serum enzyme alterations in neuromuscular disorders. JAMA. 1973;226(13):1536–43.

    Article  PubMed  CAS  Google Scholar 

  73. Rosalki SB. Serum enzymes in disease of skeletal muscle. Clin Lab Med. 1989;9(4):767–81.

    PubMed  CAS  Google Scholar 

  74. Arenas J, Diaz V, Liras G. Activities of creatine kinase and its isoenzymes in serum in various skeletal muscle disorders. Clin Chem. 1988;34(12):2460–2.

    PubMed  CAS  Google Scholar 

  75. Welch KMA, Goldberg DM. Serum creatine phosphokinase in motor neuron disease. Neurology. 1972;22:697–701.

    Article  PubMed  CAS  Google Scholar 

  76. Achari AN, Anderson MS. Serum CPK in ALS. Neurology. 1974;24:834.

    Article  Google Scholar 

  77. Rudnik-Schöneborn S, Lützenrath S, Borkowska J, et al. Analysis of creatine kinase activity in 504 patients with proximal spinal muscular atrophy types I-III from the point of view of progression and severity. Eur Neurol. 1998;39:154–62.

    Article  PubMed  Google Scholar 

  78. Waring WP, Davidoff G, Werner R. Serum creatine kinase in the post-polio population. Am J Phys Med Rehabil. 1989;68(2):86–90.

    Article  PubMed  CAS  Google Scholar 

  79. Ropper AH, Shahani BT. Pain in Guillain-Barré syndrome. Arch Neurol. 1984;41:511–4.

    Article  PubMed  CAS  Google Scholar 

  80. Harrington TM, Cohen MD, Bartleson JD, Ginsburg WW. Elevation of creatine kinase in amyotrophic lateral sclerosis. Arthritis Rheum. 1983;26(2):201–5.

    Article  PubMed  CAS  Google Scholar 

  81. Beyer IW, Karmali R, Demeester-Mirkine N. Serum creatine kinase levels in overt and subclinical hypothyroidism. Thyroid. 1998;8:1029–31.

    Article  PubMed  CAS  Google Scholar 

  82. Scott KR, Simmons Z, Boyer PJ. Hypothyroid myopathy with strikingly elevated serum creatine kinase level. Muscle Nerve. 2002;26:141–4.

    Article  PubMed  CAS  Google Scholar 

  83. Hays AP, Gamboa E. Acute viral myositis. In: Engel AG, Franzini Armstrong C, editors. Myology: basic and clinical. 2nd ed. New York: McGraw-Hill Inc; 1994. p. 1399–418.

    Google Scholar 

  84. King JO, Zapf P. A review of the value of creatine phosphokinase estimations in clinical medicine. Med J Aust. 1972;1:699–703.

    PubMed  CAS  Google Scholar 

  85. Kozanoglu E, Basaian S, Goucu MK. Proximal myopathy as an unusual presenting feature of celiac disease. Clin Rheumatol. 2005;24:76–8.

    Article  PubMed  Google Scholar 

  86. Ertekin V, Ayse Silimoglu M, Tan H, Kilicaslan B. Rhabdomyolysis in celiac disease. Yonsei Med J. 2003;44:328–30.

    PubMed  Google Scholar 

  87. Paret G, Tirosh R, Ben-Zeev B, et al. Rhabdomyolysis due to hereditary torsion dystonia. Pediatr Neurol. 1995;13:83–4.

    Article  PubMed  CAS  Google Scholar 

  88. Konikoff F, Halevy J, Theodore E. Serum kinase after intramuscular injections. Postgrad Med J. 1985;61:595–8.

    Article  PubMed  CAS  Google Scholar 

  89. Finsterer J, Mittendorfer B, Neuhuber W, Loscher WN. Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels. J Electromyogr Kinesiol. 2002;12:329–37.

    Article  PubMed  Google Scholar 

  90. Chesson AL, Kasarkis EJ, Small VW. Post ictal elevations of serum CK level. Ann Neurol. 1983;40:315–7.

    CAS  Google Scholar 

  91. Hillbrand M, Spits RT, Foster HG, et al. Creatine kinase elevations and aggressive behavior in hospitalized forensic patients. Psychiatr Q. 1998;69(1):69–82.

    Article  PubMed  CAS  Google Scholar 

  92. Manor I, Hermesh H, Valevski A, et al. Recurrence pattern of serum creatine phosphokinase levels in repeated acute psychosis. Biol Psychiatry. 1998;43(4):288–92.

    Article  PubMed  CAS  Google Scholar 

  93. Levin R, Pascuzzi RM, Bruns DE, Boyd JC, Toly TM, Phillips LH. The time course of creatine kinase elevation following concentric needle EMG. Muscle Nerve. 1987;10:242–5.

    Article  PubMed  CAS  Google Scholar 

  94. Miller JAL. Statins – challenges and provocations. Curr Opin Neurol. 2005;18:494–6.

    Article  PubMed  CAS  Google Scholar 

  95. Tsivgoulis G, Spengos K, Karandreas N, et al. Presymptomatic neuromuscular disorders disclosed following statin treatment. Arch Intern Med. 2006;166(14):1519–24.

    Article  PubMed  CAS  Google Scholar 

  96. Rowland LP. CPK in neuropsychiatric disease. Res Publ Assoc Res Nerv Ment Dis. 1975;54:209–13.

    PubMed  CAS  Google Scholar 

  97. Rowland LP, Willner J, Cerri C, et al. Approaches to the membrane theory of muscular dystrophy. In: Angelini C, Danieli GA, Fantanari D, editors. Muscular dystrophy: advances and new trends. Amsterdam: Experta Medica; 1980. p. 3–13.

    Google Scholar 

  98. Sunohara N, Takagi A, Nonaka I. Idiopathic hyperCKemia. Neurology. 1984;34:544–7.

    Article  PubMed  CAS  Google Scholar 

  99. Galassi G, Rowland LP, Hays AP, et al. High serum levels of creatine kinase: asymptomatic prelude to distal myopathy. Muscle Nerve. 1987;10:346–50.

    Article  PubMed  CAS  Google Scholar 

  100. Brewster LM, de Visser M. Persistent hyperCKemia: fourteen patients studied in retrospect. Acta Neurol Scand. 1988;77:60–3.

    Article  PubMed  CAS  Google Scholar 

  101. Joy JL, Oh SJ. Asymptomatic hyper-CKemia: an electrophysiologic and histopathologic study. Muscle Nerve. 1989;12:206–9.

    Article  PubMed  CAS  Google Scholar 

  102. Weglinski MR, Wedel DJ, Engel AG. Malignant hyperthermia testing in patients with persistently increased serum creatine kinase levels. Anesth Analg. 1997;84(5):1038–41.

    PubMed  CAS  Google Scholar 

  103. Monsieurs HG, Van-Broeckhoven C, Martin JJ, et al. Gly341Arg Mutation indicating malignant hyperthermia susceptibility: specific cause of chronically elevated serum creatine kinase activity. J Neurol Sci. 1998;154(1):62–5.

    Article  PubMed  CAS  Google Scholar 

  104. Tachi N, Wakal S, Yutoh Y, et al. Asymptomatic hyperCKemia: detection of an isolated carrier of Duchenne muscular dystrophy. J Child Neurol. 1990;5:351–2.

    Article  PubMed  CAS  Google Scholar 

  105. Hoffman EP, Clemens PR. HyperCKemic, proximal muscular dystrophies and the dystrophin membrane cytoskeleton, including dystrophinopathies, sarcoglycanopathies, and merosinopathies. Curr Opin Rheumatol. 1996;8:528–38.

    Article  PubMed  CAS  Google Scholar 

  106. Prelle A, Tancredi L, Sciacco M, et al. Retrospective study of a large population of patients with asymptomatic of minimally symptomatic raised serum creatine kinase levels. J Neurol. 2002;249:305–11.

    Article  PubMed  Google Scholar 

  107. Morandi L, Angelini C, Prelle A, Pini A, Grassi B, Bernardi G, et al. High plasma creatine kinase: review of the literature and proposal for a diagnostic algorithm. Neurol Sci. http://www.ncbi.nlm.nih.gov/pubmed/17122938. 2006;27(5):303–11.

    Article  PubMed  CAS  Google Scholar 

  108. Reijneveld JC, Notermans LC, Linssen WH, Wokke JH. Benign prognosis in idiopathic hyper-CK-aemia. Muscle Nerve. 2000;23:575–9.

    Article  PubMed  CAS  Google Scholar 

  109. Kleppe B, Reimers CD, Altmann C, Pongratz DE. Findings in 100 patients with idiopathic increase in serum creatine kinase activity. Med Klin. 1995;90:623–7.

    CAS  Google Scholar 

  110. Simmons Z, Peterlin BL, Boyer PJ, Towfighi J. Muscle biopsy in the evaluation of patients with modestly elevated creatine kinase levels. Muscle Nerve. 2003;27:242–4.

    Article  PubMed  Google Scholar 

  111. Horecker B, Tsolas O, Lai C, In Boyer P. The enzymes: mechanism of catalysis, vol. 7. 3rd ed. New York: Academic; 1972.

    Google Scholar 

  112. Nozaki K, Pestronk A. High aldolase with normal creatine kinase in serum predicts a myopathy with perimysial pathology. J Neurol Neurosurg Psychiatry. 2009;80:904–9.

    Article  PubMed  CAS  Google Scholar 

  113. Hengstman GJD. Isolated elevated aldolase as a marker for a myositis subtype: another branch to the polymyositis tree. J Neurol Neurosurg Psychiatry. 2009;80(8):829.

    Article  PubMed  Google Scholar 

  114. Wolf PL. Lactate dehydrogenase 6: a biochemical sign of serious hepatic circulatory disturbance. Arch Intern Med. 1985;145:1396–7.

    Article  PubMed  CAS  Google Scholar 

  115. Sanchez-Navarro MR, Wangensteen FR, Almendros O. Serum creatine kinase MM isoforms and lactate dehydrogenase isoenzymes in patients with non-traumatic acute rhabdomyolysis. An Med Interna. 1998;15:13–7.

    PubMed  CAS  Google Scholar 

  116. Hooshmand H. Serum lactate dehydrogenase isoenzymes in neuromuscular disease. Dis Nerv Syst. 1975;36:607–11.

    PubMed  CAS  Google Scholar 

  117. Ibrahim GA, Zweber BA, Award EA. Muscle and serum enzymes and isoenzymes in muscular dystrophies. Arch Phys Med Rehabil. 1981;62:265–9.

    PubMed  CAS  Google Scholar 

  118. Gorecka A. Lactic dehydrogenase isoenzymes [LDH] in the serum of patients with progressive muscular dystrophy. Neurol Neurochir Pol. 1975;9:7–13.

    PubMed  CAS  Google Scholar 

  119. Tsutsumi H, Tani K, Fujii H, Miwa S. Expression of L- and M-type pyruvate kinase in human tissues. Genomics. 1988;2(1):86–9.

    Article  PubMed  CAS  Google Scholar 

  120. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452(7184):181–6.

    Article  PubMed  CAS  Google Scholar 

  121. Noguchi T, Inoue H, Tanaka T. The M1 and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative splicing. J Biol Chem. 1986;261(29):13807–12.

    PubMed  CAS  Google Scholar 

  122. Weinstock IM, Behrendt J, Wiltshire HE, Keleman J, Louis S. Pyruvate kinase: diagnostic value in neuromuscular disease. Clin Chim Acta. 1977;80(3):415–22.

    Article  PubMed  CAS  Google Scholar 

  123. Harano Y, Adair R, Vignos PJ, Miller M, Kowal J. Pyruvate kinase isoenzymes in progressive muscular dystrophy and in acute myocardial infarction. Metabolism. 1973;22(3):493–501.

    Article  PubMed  CAS  Google Scholar 

  124. Aston JP, Kingston HM, Ramasamy I, et al. Plasma pyruvate kinase and creatine kinase activity in Becker muscular dystrophy. J Neurol Sci. 1984;65:307–14.

    Article  PubMed  CAS  Google Scholar 

  125. Peshavaria M, Day IN. Molecular structure of the human muscle-specific enolase gene (ENO3). Biochem J. 1991;275:427–33.

    PubMed  CAS  Google Scholar 

  126. Mokuno K, Riku S. Serum carbonic anhydrase III in myotonic dystrophy. Muscle Nerve. 1986;9:257–60.

    Article  PubMed  CAS  Google Scholar 

  127. Mokuno K, Riku S, Matsuoka Y, et al. Serum muscle-specific enolase in progressive muscular dystrophy and other neuromuscular diseases. J Neurol Sci. 1984;63:345–52.

    Article  PubMed  CAS  Google Scholar 

  128. Shima K, Tashiro K, Hibi N, Tsukada Y, Hirai H. Carbonic anhydrase-III immunohistochemical localization in human skeletal muscle. Acta Neuropathol. 1983;59(3):237–9.

    Article  PubMed  CAS  Google Scholar 

  129. Takala TE, Rahkila P, Hakala E, Vuori J, Puranen J, Väänänen HK. Serum carbonic anhydrase III, an enzyme of type I muscle fibers, and the intensity of physical exercise. Pflugers Arch. 1989;413(5):447–50.

    Article  PubMed  CAS  Google Scholar 

  130. Väänänen HK, Kumpulainen T, Korhornen LK. Carbonic anhydrase in the type I skeletal muscle fibers of the rat. An immunohistochemical study. J Histochem Cytochem. 1982;30(11):1109–13.

    Article  PubMed  Google Scholar 

  131. Heath R, Schwartz M, Brown I, et al. Carbonic anhydrase III in neuromuscular disorders. J Neurol Sci. 1983;59:383–8.

    Article  PubMed  CAS  Google Scholar 

  132. Hibi N, Shima K, Tashiro K, et al. Development of a highly sensitive enzyme-immunoassay for serum carbonic anhydrase-III. J Neurol Sci. 1984;65:333–40.

    Article  PubMed  CAS  Google Scholar 

  133. Väänänen HK, Timo E, Takala S, Tolonen U, Vuori J, Myllylä VV. Muscle-specific carbonic anhydrase III is a more sensitive marker of muscle damage than creatine kinase in neuromuscular disorders. Arch Neurol. 1988;45(11):1254–6.

    Article  PubMed  Google Scholar 

  134. Oh RC, Hustead TR. Causes and evaluation of mildly elevated liver transaminase levels. Am Fam Physician. 2011;84(9):1003–8.

    PubMed  Google Scholar 

  135. Wright MA, Yang ML, Parsons JA, Westfall JM, Yee AS. Consider muscle disease in children with elevated transaminase. J Am Board Fam Med. 2012;25:4536–40.

    Article  Google Scholar 

  136. Urganci N, Erkan T, Serdaroğlu P, Özçelik G, Doğan S, Kayaalp N. A rare cause of high transaminasemia: autosomal muscle dystrophy with gamma sarcoglycan. J Pediatr Gastroenterol Nutr. 2001;32(3):327–9.

    Article  PubMed  CAS  Google Scholar 

  137. Kamanth BM, Dhawan A, Mieli-Vergani G. Raised serum transaminases: not always liver disease. Arch Dis Child. 2000;82(3):270–1.

    Google Scholar 

  138. Urganci N, Arapoğlu M, Serdaroğlu P, Nuhoğlu A. Incidental raised transaminases: a clue to muscle disease. Ann Trop Paediatr. 2006;26(4):345–8.

    Article  PubMed  Google Scholar 

  139. Nathwani RA, Pais S, Reynolds TB, Kaplowitz N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology. 2005;41(2):380–2.

    Article  PubMed  CAS  Google Scholar 

  140. Rosales XQ, Chu ML, Shilling C, Wall C, Pastores GM, Mendell JR. Fidelity of gamma-glutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J Child Neurol. 2008;23(7):748–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahila Ansari MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ansari, R., Katirji, B. (2014). Serum Muscle Enzymes in Neuromuscular Disease. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics