Skip to main content

The Origin of Autophagosomes: The Beginning of an End

  • Chapter
  • First Online:
Autophagy and Cancer

Part of the book series: Current Cancer Research ((CUCR,volume 8))

  • 1953 Accesses

Abstract

Autophagy is a catabolic intracellular process highly conserved among eukaryotes. During this process cytoplasmic material and organelles are surrounded and enclosed by double-membranes, forming vesicles called autophagosomes. Fusion of the autophagosomes with the lysosome/vacuole permits to expose the inner membrane compartment to lytic enzymes allowing the degradation of the engulfed cellular components. Autophagy has been shown to be an essential process for the cell survival in a multitude of situations. At a basal level, this catabolic pathway allows the removal of protein aggregates and/or damaged organelles to preserve the cell homeostasis. Under diverse pathological and physiological situations, the cell responds by increasing the levels of autophagy activity to cope with developmental adaptations or stresses. As a result, autophagy onset is observed in numerous diseases including neurodegenerative disorders, cancer, and myopathies. The cellular roles of autophagy as well as the function of the autophagy related (Atg) proteins have been extensively studied in the last decade and significant advances have been achieved. However, a multitude of questions still have to be answered before understanding the regulation and mechanism of autophagy in its full complexity. One of the enigmas in the field of autophagy is the origin of the lipid bilayers composing autophagosomes. While a considerable effort has been invested in solving this question during the past years, a consensus has not been reached yet. In this chapter, we discuss the studies, large part performed in yeast and mammalian cells, which propose several organelles of the eukaryotic cell including the endoplasmic reticulum (ER), Golgi, mitochondria, endosomes, and plasma membrane, as the source of autophagosomal membranes.

Susana Abreu and Jana Sanchez-Wandelmer have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arstila AU, Trump BF (1968) Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol 53(5):687–733

    PubMed  CAS  Google Scholar 

  • Axe EL et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701

    Article  PubMed  CAS  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  Google Scholar 

  • Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110(6):1923–1933

    Article  PubMed  Google Scholar 

  • Dusetti NJ et al (2002) Cloning and expression of the rat vacuole membrane protein 1 (VMP1), a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun 290(2):641–649

    Article  PubMed  CAS  Google Scholar 

  • Furuno K, Ishikawa T, Kato K (1982) Isolation and characterization of autolysosomes which appeared in rat liver after leupeptin treatment. J Biochem 91(6):1943–1950

    PubMed  CAS  Google Scholar 

  • Geng J et al (2010) Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21(13):2257–2269

    Article  PubMed  CAS  Google Scholar 

  • Gillooly DJ et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19(17):4577–4588

    Article  PubMed  CAS  Google Scholar 

  • Hailey DW et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667

    Article  PubMed  CAS  Google Scholar 

  • Hansen TE, Johansen T (2011) Following autophagy step by step. BMC Biol 9:39

    Article  PubMed  Google Scholar 

  • Hayashi-Nishino M et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    Article  PubMed  CAS  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6(15):1837–1849

    Article  PubMed  CAS  Google Scholar 

  • Ishihara N et al (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12(11):3690–3702

    PubMed  CAS  Google Scholar 

  • Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6(6):764–776

    Article  PubMed  CAS  Google Scholar 

  • Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372

    Article  PubMed  CAS  Google Scholar 

  • Itakura E et al (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125(Pt 6):1488–1499

    Article  PubMed  CAS  Google Scholar 

  • Itoh T et al (2008) Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 19(7):2916–2925

    Article  PubMed  CAS  Google Scholar 

  • Itoh T et al (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192(5):839–853

    Article  PubMed  CAS  Google Scholar 

  • Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4(2):e36

    Article  PubMed  Google Scholar 

  • Kageyama S et al (2011) The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 22(13):2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Naylor SA, DiAntonio A (2012) Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci USA 109(18):E1072–E1081

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18

    Article  PubMed  CAS  Google Scholar 

  • Kominami E et al (1983) Sequestration of cytoplasmic enzymes in an autophagic vacuole-­lysosomal system induced by injection of leupeptin. J Biol Chem 258(10):6093–6100

    PubMed  CAS  Google Scholar 

  • Kornmann B et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481

    Article  PubMed  CAS  Google Scholar 

  • Liou W et al (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136(1):61–70

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Collins JV (1965) The structure and formation of protein granules in the fat body of an insect. J Cell Biol 26(3):857–884

    Article  PubMed  CAS  Google Scholar 

  • Longatti A et al (2012) TBC1D14 regulates autophagosome formation via Rab11- and ULK1-­positive recycling endosomes. J Cell Biol 197(5):659–675

    Article  PubMed  CAS  Google Scholar 

  • Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6(6):439–448

    Article  PubMed  CAS  Google Scholar 

  • Lynch-Day MA et al (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 107(17):7811–7816

    Article  PubMed  CAS  Google Scholar 

  • Mari M et al (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Tooze SA, Reggiori F (2011) The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 3:25

    Article  PubMed  Google Scholar 

  • Matsunaga K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K et al (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190(4):511–521

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668

    Article  PubMed  CAS  Google Scholar 

  • Moreau K et al (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146(2):303–317

    Article  PubMed  CAS  Google Scholar 

  • Moreau K et al (2012) Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J Cell Biol 196(4):483–496

    Article  PubMed  CAS  Google Scholar 

  • Munafo DB, Colombo MI (2002) Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 3(7):472–482

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa I et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306(5698):1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  PubMed  CAS  Google Scholar 

  • Noda T et al (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3):465–480

    Article  PubMed  CAS  Google Scholar 

  • Noda T et al (2012) Three-axis model for Atg recruitment in autophagy against Salmonella. Int J Cell Biol 2012:389562

    PubMed  Google Scholar 

  • Ohashi Y, Munro S (2010) Membrane delivery to the yeast autophagosome from the Golgi-­endosomal system. Mol Biol Cell 21(22):3998–4008

    Article  PubMed  CAS  Google Scholar 

  • Orsi A et al (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23(10):1860–1873

    Article  PubMed  CAS  Google Scholar 

  • Polson HE et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522

    Google Scholar 

  • Ravikumar B et al (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121(Pt 10):1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F (2006) 1. Membrane origin for autophagy. Curr Top Dev Biol 74:1–30

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F, Tooze SA (2009) The EmERgence of autophagosomes. Dev Cell 17(6):747–748

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F et al (2004a) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15(5):2189–2204

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F et al (2004b) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F et al (2012) Autophagy: more than a nonselective pathway. Int J Cell Biol 2012:219625

    PubMed  Google Scholar 

  • Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5(7):455–468

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC et al (2005) Dyneins, autophagy, aggregation and neurodegeneration. Autophagy 1(3):177–178

    Article  PubMed  CAS  Google Scholar 

  • Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-­associated membranes. J Biol Chem 275(44):34534–34540

    Article  PubMed  CAS  Google Scholar 

  • Suhy DA, Giddings TH Jr, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74(19):8953–8965

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K et al (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K et al (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y et al (2011) Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7(1):61–73

    Article  PubMed  CAS  Google Scholar 

  • Tian Y et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141(6):1042–1055

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA (2010) The role of membrane proteins in mammalian autophagy. Semin Cell Dev Biol 21(7):677–682

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835

    Article  PubMed  CAS  Google Scholar 

  • Tooze J et al (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111(2):329–345

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Muno D, Kominami E (1991) Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem 266(28):18995–18999

    PubMed  CAS  Google Scholar 

  • van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6(6):800–801

    Article  PubMed  Google Scholar 

  • Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49(7):1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Masaki R, Tashiro Y (1990) Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem 38(4):573–580

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H et al (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233

    Article  PubMed  CAS  Google Scholar 

  • Yla-Anttila P et al (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Article  PubMed  Google Scholar 

  • Yokota S (1993) Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 61(1):67–80

    PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Young AR et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119(Pt 18):3888–3900

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Rene Scriwanek for the realization of the figures. F.R. is supported by the ECHO (700.59.003), ALW Open Program (821.02.017), and DFG-NWO cooperation (DN82-303) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Reggiori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abreu, S., Sanchez-Wandelmer, J., Reggiori, F. (2013). The Origin of Autophagosomes: The Beginning of an End. In: Wang, HG. (eds) Autophagy and Cancer. Current Cancer Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6561-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6561-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6560-7

  • Online ISBN: 978-1-4614-6561-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics