Skip to main content

Interphase Cytogenetics at the Earliest Stages of Human Development

  • Chapter
  • First Online:
Book cover Human Interphase Chromosomes

Abstract

The widespread use of in vitro fertilization (IVF) throughout the world provides the opportunity to study human development at the very earliest stages before implantation. Nonetheless, the study of human embryos poses a series of unique ethical and moral implications. The unique totipotent nature of a human embryo and its potential to develop into a child necessitates a level of restriction and regulatory control that is not present when studying other cell types. Although some governments outlaw any experimental procedure on human embryonic material, others allow it under appropriate control. In the latter case (e.g., in the UK), experimentation can be justified on the basis of development of a diagnostic test and/or the goal of improving patient care. A further challenge to effective study is the paucity of material available. Much of the work reported in this chapter arises from the study of only single nuclei. For these reasons, research on interphase cytogenetics in human preimplantation embryos is less advanced than in other cell types. Despite this, a fundamental insight into chromosome copy number and nuclear organization can be gleaned from this material through collaboration with an appropriate clinical program. As attested by other chapters in this book, fluorescent in situ hybridization (FISH) was first adopted for research, but clinical applications rapidly followed. Prenatal and cancer diagnostics are the best examples of this,, but the increasing use of assisted reproductive technologies, namely IVF, precipitated the use of FISH in the field of preimplantation genetic diagnosis (PGD). PGD is defined as the diagnosis of genetic disorders in human preimplantation embryos. The purpose is selective implantation of unaffected embryos in the hope of establishing genetically normal ongoing pregnancies. PGD by interphase cytogenetics was first applied for sexing (to screen for sex-linked disorders), then for chromosome translocations, and later for chromosome copy number. In the latter case, termed preimplantation genetic screening (PGS), families at risk of adverse obstetrical outcomes (referral categories include advanced maternal age and recurrent miscarriage) are targeted, rather than families at risk of transmitting inherited disorders in a classical Mendelian fashion. Clinical application of interphase cytogenetics in the IVF world has allowed the subsequent study of chromosome copy number and nuclear organization. This chapter provides an overview of interphase cytogenetics in human embryos, highlighting the progress and the sometimes contentious pitfalls that it has encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baart EB et al (2007) FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn 27(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Beyer CE et al (2009) Preimplantation genetic screening outcomes are associated with culture conditions. Hum Reprod 24(5):1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Brezina PR, Brezina PR et al (2011) Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril 95(5):1786e5–1786e8

    Article  CAS  Google Scholar 

  • Chang LJ et al (2011) An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening. Clin Exp Reprod Med 38(3):126–134

    Article  PubMed  Google Scholar 

  • Checa MA et al (2009) IVF/ICSI with or without preimplantation genetic screening for aneuploidy in couples without genetic disorders: a systematic review and meta-analysis. J Assist Reprod Genet 26(5):273–283

    Article  PubMed  Google Scholar 

  • Chen Y et al (2007) A normal birth following preimplantation genetic diagnosis by FISH determination in the carriers of der(15)t(Y;15)(Yq12;15p11) translocations: two case reports. J Assist Reprod Genet 24(10):483–488

    Article  PubMed  Google Scholar 

  • Chiamchanya C et al (2008) Preimplantation genetic screening (PGS) in infertile female age > or = 35 years by fluorescence in situ hybridization of chromosome 13, 18, 21, X and Y. J Med Assoc Thai 91(11):1644–1650

    PubMed  Google Scholar 

  • Cohen J, Grifo JA (2007) Multicentre trial of preimplantation genetic screening reported in the New England Journal of Medicine: an in-depth look at the findings. Reprod Biomed Online 15(4):365–366

    Article  PubMed  Google Scholar 

  • Cohen J et al (2009) The role of preimplantation genetic diagnosis in diagnosing embryo aneuploidy. Curr Opin Obstet Gynecol 21(5):442–449

    Article  Google Scholar 

  • Colls P et al (2009) Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. Reprod Biomed Online 19(4):532–538

    Article  PubMed  CAS  Google Scholar 

  • Coonen E et al (2000) Preimplantation genetic diagnosis of a reciprocal translocation t(3;11)(q27.3;q24.3) in siblings. Mol Hum Reprod 6(3):199–206

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Daphnis DD et al (2005) Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod 20(1):129–137

    Article  PubMed  CAS  Google Scholar 

  • Daphnis DD et al (2008) Analysis of the evolution of chromosome abnormalities in human embryos from day 3 to 5 using CGH and FISH. Mol Hum Reprod 14(2):117–125

    Article  PubMed  CAS  Google Scholar 

  • Debrock S et al (2010) Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at least 35 years: a prospective randomized trial. Fertil Steril 93(2):364–373

    Article  PubMed  Google Scholar 

  • Delhanty JD et al (1997) Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99(6):755–760

    Article  PubMed  CAS  Google Scholar 

  • DeUgarte CM et al (2008) Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis. Fertil Steril 90(4):1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Diblik J et al (2007) Chromosome topology in normal and aneuploid blastomeres from human embryos. Prenat Diagn 27(12):1091–1099

    Article  PubMed  Google Scholar 

  • Donoso P et al (2007) Current value of preimplantation genetic aneuploidy screening in IVF. Hum Reprod Update 13(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2011) Biogenesis of nuclear bodies. Cold Spring Harb Perspect Biol 2(12):a000711

    Article  CAS  Google Scholar 

  • Finch KA et al (2008) Nuclear organisation in totipotent human nuclei and its relationship to chromosomal abnormality. J Cell Sci 121(pt 5):655–663

    Article  PubMed  CAS  Google Scholar 

  • Fishel S, Fishel S et al (2010) Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy: the future of IVF? Fertil Steril 93(3):1006 e7–1006 e10

    Article  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma (Berl) 114(4):212–229

    Article  Google Scholar 

  • Foster HA et al (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118(pt 9):1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Fragouli E et al (2010) Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril 94(3):875–887

    Article  PubMed  Google Scholar 

  • Fragouli E et al (2011) Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod 26(2):480–490

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature (Lond) 447(7143):413–417

    Article  CAS  Google Scholar 

  • Fritz MA (2008) Perspectives on the efficacy and indications for preimplantation genetic screening: where are we now? Hum Reprod 23(12):2617–2621

    Article  PubMed  Google Scholar 

  • Gabriel AS et al (2011) An algorithm for determining the origin of trisomy and the positions of chiasmata from SNP genotype data. Chromosome Res 19(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Garrisi JG et al (2009) Effect of infertility, maternal age, and number of previous miscarriages on the outcome of preimplantation genetic diagnosis for idiopathic recurrent pregnancy loss. Fertil Steril 92(1):288–295

    Article  PubMed  Google Scholar 

  • Goossens V et al (2009) ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum Reprod 24(8):1786–1810

    Article  PubMed  CAS  Google Scholar 

  • Goossens V et al (2012) ESHRE PGD Consortium data collection XI: cycles from January to December 2008 with pregnancy follow-up to October 2009. Hum Reprod 27(7):1887–1911

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK (1994) Fluorescent in situ hybridization for the diagnosis of genetic disease at postnatal, prenatal, and preimplantation stages. Int Rev Cytol 153:1–40

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK (1996) The incidence, origin, and etiology of aneuploidy. Int Rev Cytol 167:263–296

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK et al (1991) Fluorescent in-situ hybridization to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum Reprod 6(1):101–105

    PubMed  CAS  Google Scholar 

  • Griffin DK et al (1992) Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei. Hum Genet 89(1):18–22

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK et al (1993) Diagnosis of sex in preimplantation embryos by fluorescent in situ hybridisation. BMJ 306(6889):1382

    Article  PubMed  CAS  Google Scholar 

  • Handyside A, Thornhill A (2007) In vitro fertilisation with preimplantation genetic screening. N Engl J Med 357(17):1770

    PubMed  CAS  Google Scholar 

  • Handyside AH et al (2010) Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet 47(10):651–658

    Article  PubMed  Google Scholar 

  • Hardarson T et al (2008) Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod 23(12):2806–2812

    Article  PubMed  CAS  Google Scholar 

  • Harper JC, Harton G (2010) The use of arrays in preimplantation genetic diagnosis and screening. Fertil Steril 94(4):1173–1177

    Article  PubMed  CAS  Google Scholar 

  • Harper JC et al (1994) Identification of the sex of human preimplantation embryos in two hours using an improved spreading method and fluorescent in-situ hybridization (FISH) using directly labelled probes. Hum Reprod 9(4):721–724

    PubMed  CAS  Google Scholar 

  • Harper J et al (2008) What next for preimplantation genetic screening? Hum Reprod 23(3):478–480

    Article  PubMed  Google Scholar 

  • Harper J et al (2010) What next for preimplantation genetic screening (PGS)? A position statement from the ESHRE PGD Consortium steering committee. Hum Reprod 25(4):821–823

    Article  PubMed  Google Scholar 

  • Hernandez ER (2009) What next for preimplantation genetic screening? Beyond aneuploidy. Hum Reprod 24(7):1538–1541

    Article  PubMed  Google Scholar 

  • Ioannou D, Griffin DK (2011) Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 133(2-4):269–279

    Article  PubMed  CAS  Google Scholar 

  • Ioannou D et al (2011a) Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers. Mol Cell Probes 25(5-6):199–205

    Article  PubMed  CAS  Google Scholar 

  • Ioannou D et al (2011b) Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosome Res 19(6):741–753

    Article  PubMed  CAS  Google Scholar 

  • Ioannou D et al (2012) Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation. Chromosome Res 20(4):447–460

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP et al (2008) What next for preimplantation genetic screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod 23(7):1476–1478

    Article  PubMed  Google Scholar 

  • Khalil A et al (2007) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosome Res 15(7):899–916

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115

    Article  PubMed  CAS  Google Scholar 

  • Le Caignec C et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34(9):e68

    Article  PubMed  Google Scholar 

  • Lim CK et al (2008) A healthy live birth after successful preimplantation genetic diagnosis for carriers of complex chromosome rearrangements. Fertil Steril 90(5):1680–1684

    Article  PubMed  Google Scholar 

  • Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71(4):288–293

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1990) A view of interphase chromosomes. Science 250(4987):1533–1540

    Article  PubMed  CAS  Google Scholar 

  • Martin RH (2008) Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 16(4):523–531

    Article  PubMed  Google Scholar 

  • Mastenbroek S et al (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • McKenzie LJ et al (2004) Nuclear chromosomal localization in human preimplantation embryos: correlation with aneuploidy and embryo morphology. Hum Reprod 19(10):2231–2237

    Article  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature (Lond) 445(7126):379–781

    Article  CAS  Google Scholar 

  • Meaburn KJ, Parris CN, Bridger JM (2005) The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma (Berl) 114(4):263–274

    Article  Google Scholar 

  • Mersereau JE et al (2008) Preimplantation genetic screening to improve in vitro fertilization pregnancy rates: a prospective randomized controlled trial. Fertil Steril 90(4):1287–1289

    Article  PubMed  Google Scholar 

  • Mewar R et al (1992) Confirmation of a cryptic unbalanced translocation using whole chromosome fluorescence in situ hybridization. Am J Med Genet 44(4):477–481

    Article  PubMed  CAS  Google Scholar 

  • Miguel RB, Pombox A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:780–788

    Google Scholar 

  • Munne S (2003) Preimplantation genetic diagnosis and human implantation—a review. Placenta 24(suppl B):S70–S76

    Article  PubMed  CAS  Google Scholar 

  • Munne S, Cohen J (1998) Chromosome abnormalities in human embryos. Hum Reprod Update 4(6):842–855

    Article  PubMed  CAS  Google Scholar 

  • Munne S et al (1993) Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod 8(12):2185–2191

    PubMed  CAS  Google Scholar 

  • Munne S et al (1994) Chromosome mosaicism in human embryos. Biol Reprod 51(3):373–379

    Article  PubMed  CAS  Google Scholar 

  • Munne S, et al (1995) Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol 172(4 pt 1):1191–1199; discussion 1199–1201

    Google Scholar 

  • Munne S et al (1998) Preimplantation genetic analysis of translocations: case-specific probes for interphase cell analysis. Hum Genet 102(6):663–674

    Article  PubMed  CAS  Google Scholar 

  • Munne S et al (2000) Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril 73(6):1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Munne S et al (2004) Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online 8(1):81–90

    Article  PubMed  Google Scholar 

  • Munne S et al (2007a) Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online 14(5):628–634

    Article  PubMed  CAS  Google Scholar 

  • Munne S et al (2007b) Substandard application of preimplantation genetic screening may interfere with its clinical success. Fertil Steril 88(4):781–784

    Article  PubMed  Google Scholar 

  • Munne S, Cohen J, Simpson JL (2007c) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(17):1769–1770

    Article  PubMed  CAS  Google Scholar 

  • Northrop LE et al (2010) SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod 16(8):590–600

    Article  PubMed  CAS  Google Scholar 

  • Obradors A et al (2008) Birth of a healthy boy after a double factor PGD in a couple carrying a genetic disease and at risk for aneuploidy: case report. Hum Reprod 23(8):1949–1956

    Article  PubMed  CAS  Google Scholar 

  • Oliver B, Misteli T (2005) A non-random walk through the genome. Genome Biol 6(4):214

    Article  PubMed  CAS  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2004) The spatial organization of the genome in mammalian cells. Curr Opin Genet Dev 14(2):203–209

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3(3):a000638

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192(5):711–721

    Article  PubMed  CAS  Google Scholar 

  • Rouquette J et al (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90

    Article  PubMed  CAS  Google Scholar 

  • Schoenfelder S, Clay I, Fraser P (2010) The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20(2):127–133

    Article  PubMed  CAS  Google Scholar 

  • Schoolcraft WB et al (2009) Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril 92(1):157–162

    Article  PubMed  Google Scholar 

  • Schoolcraft WB et al (2010) Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril 94(5):1700–1706

    Article  PubMed  Google Scholar 

  • Scriven PN, Handyside AH, Ogilvie CM (1998) Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn 18(13):1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Sermondade N, Mandelbaum J (2009) [Mastenbroek controversy or how much ink is spilled on preimplantation genetic screening subject]. Gynecol Obstet Fertil 37(3):252–256

    Article  PubMed  CAS  Google Scholar 

  • Simpson JL (2008) What next for preimplantation genetic screening? Randomized clinical trial in assessing PGS: necessary but not sufficient. Hum Reprod 23(10):2179–2181

    Article  PubMed  Google Scholar 

  • Simpson JL (2010) Preimplantation genetic diagnosis at 20 years. Prenat Diagn 30(7):682–695

    Article  PubMed  Google Scholar 

  • Simpson J, Tempest H (2010) Role of preimplantation genetic diagnosis (PGD) in current infertility practice. Int J Infertility Fetal Med 1(1):1–10

    Google Scholar 

  • Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3(2):a000646

    Article  PubMed  CAS  Google Scholar 

  • Staessen C et al (2004) Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod 19(12):2849–2858

    Article  PubMed  Google Scholar 

  • Staessen C et al (2008) Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod 23(12):2818–2825

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H et al (2001) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    Google Scholar 

  • Thornhill AR et al (2005) ESHRE PGD Consortium ‘Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum Reprod 20(1):35–48

    Article  PubMed  CAS  Google Scholar 

  • Treff NR et al (2010) SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod 16(8):583–589

    Article  PubMed  CAS  Google Scholar 

  • Treff NR et al (2011) Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod 17(6):335–343

    Article  PubMed  CAS  Google Scholar 

  • Twisk M et al (2008) No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy. Hum Reprod 23(12):2813–2817

    Article  PubMed  Google Scholar 

  • Uher P et al (2009) Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization. Reprod Biomed Online 19(4):539–546

    Article  PubMed  Google Scholar 

  • Voullaire L et al (2000) Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet 106(2):210–217

    Article  PubMed  CAS  Google Scholar 

  • Wells D, Delhanty JD (2000) Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 6(11):1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Werlin L et al (2003) Preimplantation genetic diagnosis as both a therapeutic and diagnostic tool in assisted reproductive technology. Fertil Steril 80(2):467–468

    Article  PubMed  Google Scholar 

  • Wiland E et al (2008) Successful pregnancy after preimplantation genetic diagnosis for carrier of t(2;7)(p11.2;q22) with high rates of unbalanced sperm and embryos: a case report. Prenat Diagn 28(1):36–41

    Article  PubMed  Google Scholar 

  • Wilton LJ (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(17):1770; author reply 1770–1771

    Google Scholar 

  • Wilton L et al (2009) The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod 24(5):1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Zalensky A, Zalenskaya I (2007) Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35(pt 3):609–611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren K. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Griffin, D.K., Fonseka, G., Tempest, H.G., Thornhill, A.R., Ioannou, D. (2013). Interphase Cytogenetics at the Earliest Stages of Human Development. In: Yurov, Y., Vorsanova, S., Iourov, I. (eds) Human Interphase Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6558-4_7

Download citation

Publish with us

Policies and ethics