Skip to main content

Oncogenic Signaling from the Plasma Membrane

  • Chapter
  • First Online:
  • 1381 Accesses

Abstract

Signaling reactions on membranes play an important role in extracellular information processing by cells. The amount of signaling proteins on the plasma membrane is dynamically maintained by cells to tightly control the qualitative response properties of the signaling system. When oncogenic mutations occur in signaling proteins that are associated with the plasma membrane, the ensemble behavior of signaling molecules can change to a completely different response regime that changes the phenotype of the cell. In order to illuminate the relevance of this spatial dimension in signaling systems, we will first describe how the concentration of signaling proteins determines the qualitative response properties of simple reaction cycles in homogenous protein solutions. From there, we discuss how this concentration parameter is determined by the spatial distribution of proteins in cells and expand this to explain how the translocation of signaling proteins to membrane surfaces elicits a signaling response by changing their local concentration. Within this framework we then describe how an oncogene product’s interaction with its wild-type variant can lead to qualitatively different signaling behaviors that depend on their local concentration at membranes as maintained by spatially organizing reactions. We then argue that spatially organizing reaction systems provide an interesting target for cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niethammer P, Kronja I, Kandels-Lewis S, Rybina S, Bastiaens P, Karsenti E (2007) Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol 5(2):e29

    Article  PubMed  Google Scholar 

  2. Zamir E, Bastiaens PI (2008) Reverse engineering intracellular biochemical networks. Nat Chem Biol 4(11):643–647

    Article  PubMed  CAS  Google Scholar 

  3. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5(5):447–453

    Article  PubMed  CAS  Google Scholar 

  5. Tischer C, Bastiaens PI (2003) Lateral phosphorylation propagation: an aspect of feedback signalling? Nat Rev Mol Cell Biol 4(12):971–974

    Article  PubMed  CAS  Google Scholar 

  6. Verveer PJ, Wouters FS, Reynolds AR, Bastiaens PI (2000) Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290(5496):1567–1570

    Article  PubMed  CAS  Google Scholar 

  7. Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314(17):3093–3106

    Article  PubMed  CAS  Google Scholar 

  8. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8(11):835–850

    Article  PubMed  CAS  Google Scholar 

  9. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY et al (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12(23):3663–3674

    Article  PubMed  CAS  Google Scholar 

  10. Bache KG, Slagsvold T, Stenmark H (2004) Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 23(14):2707–2712

    Article  PubMed  CAS  Google Scholar 

  11. Axelrod D, Wang MD (1994) Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophys J 66(3 Pt 1):588–600

    Article  PubMed  CAS  Google Scholar 

  12. Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475(7357): 510–513

    Article  PubMed  CAS  Google Scholar 

  13. Chong H, Vikis HG, Guan K-L (2003) Mechanisms of regulating the Raf kinase family. Cell Signal 15(5):463–469

    Article  PubMed  CAS  Google Scholar 

  14. Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351(Pt 2):289–305

    Article  PubMed  CAS  Google Scholar 

  15. Slater SJ (2002) Regulation of PKCalpha activity by C1-C2 domain interactions. J Biol Chem 277:15277–15285

    Article  PubMed  CAS  Google Scholar 

  16. Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S et al (2006) A Ras-induced conformational switch in the Ras activator son of sevenless. Proc Natl Acad Sci U S A 103(45):16692–16697

    Article  PubMed  CAS  Google Scholar 

  17. Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT et al (2008) Membrane-dependent signal integration by the Ras activator son of sevenless. Nat Struct Mol Biol 15(5):452–461

    Article  PubMed  CAS  Google Scholar 

  18. Gureasko J, Kuchment O, Makino DL, Sondermann H, Bar-Sagi D, Kuriyan J (2010) Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc Natl Acad Sci U S A 107(8):3430–3435

    Article  PubMed  CAS  Google Scholar 

  19. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9(6): 706–712

    Article  PubMed  CAS  Google Scholar 

  20. Sabouri-Ghomi M, Ciliberto A, Kar S, Novak B, Tyson JJ (2008) Antagonism and bistability in protein interaction networks. J Theor Biol 250(1):209–218

    Article  PubMed  CAS  Google Scholar 

  21. Hougland JL, Fierke CA (2009) Getting a handle on protein prenylation. Nat Chem Biol 5(4):197–198

    Article  PubMed  CAS  Google Scholar 

  22. Raymond FL, Tarpey PS, Edkins S, Tofts C, O’Meara S, Teague J et al (2007) Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 80(5):982–987

    Article  PubMed  CAS  Google Scholar 

  23. Hou H, John Peter AT, Meiringer C, Subramanian K, Ungermann C (2009) Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic 10(8):1061–1073

    Article  PubMed  CAS  Google Scholar 

  24. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716): 1746–1752

    Article  PubMed  CAS  Google Scholar 

  25. Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M et al (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471

    Article  PubMed  CAS  Google Scholar 

  26. Dudler T, Gelb MH (1996) Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes. J Biol Chem 271: 11541–11547

    Article  PubMed  CAS  Google Scholar 

  27. Misaki R (2010) Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis. J Cell Biol 191:23–29

    Article  PubMed  CAS  Google Scholar 

  28. Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R et al (2010) Small-­molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6(6): 449–456

    Article  PubMed  CAS  Google Scholar 

  29. Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F et al (2012) The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14(2):148–158

    Article  CAS  Google Scholar 

  30. Nancy V (2002) The delta subunit of retinal rod cGMP phosphodiesterase regulates the ­membrane association of Ras and Rap GTPases. J Biol Chem 277(17):15076–15084

    PubMed  CAS  Google Scholar 

  31. Leventis R, Silvius JR (1998) Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry 37:7640–7648

    Article  PubMed  CAS  Google Scholar 

  32. Gomez GA, Daniotti JL (2007) Electrical properties of plasma membrane modulate subcellular distribution of KRas. FEBS J 274:2210–2228

    Article  PubMed  CAS  Google Scholar 

  33. Apolloni A (2000) H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20:2487

    Article  Google Scholar 

  34. Silvius JR (2006) K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol Biol Cell 17:192–202

    Article  PubMed  CAS  Google Scholar 

  35. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143(5):774–788

    Article  PubMed  CAS  Google Scholar 

  36. Ismail SA, Chen YX, Rusinova A, Chandra A, Bierbaum M, Gremer L et al (2011) Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 7(12):942–949

    Article  PubMed  CAS  Google Scholar 

  37. Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17(5):2476–2487

    Article  PubMed  CAS  Google Scholar 

  38. Sharma SV, Settleman J (2007) Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 21(24):3214–3231

    Article  PubMed  CAS  Google Scholar 

  39. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  40. Aksamitiene E (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt ­pathways: a fine balance. Biochem Soc Trans 40:139–146

    Article  PubMed  CAS  Google Scholar 

  41. Deramaudt T, Rustgi AK (2005) Mutant KRAS in the initiation of pancreatic cancer. Biochim Biophys Acta 1756:97–101

    PubMed  CAS  Google Scholar 

  42. Luwor RB, Lu Y, Li X, Liang K, Fan Z (2011) Constitutively active Harvey Ras confers resistance to epidermal growth factor receptor-targeted therapy with cetuximab and gefitinib. Cancer Lett 306(1):85–91

    Article  PubMed  CAS  Google Scholar 

  43. Aoki Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040

    Article  PubMed  CAS  Google Scholar 

  44. Verdine GL, Walensky LD (2007) The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res 13(24):7264–7270

    Article  PubMed  CAS  Google Scholar 

  45. Brunner TB, Hahn SM, Gupta AK, Muschel RJ, McKenna WG, Bernhard EJ (2003) Farnesyltransferase inhibitors. Cancer Res 63(18):5656–5668

    PubMed  CAS  Google Scholar 

  46. Downward J (2003) Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer 3(1):11–22

    Article  PubMed  CAS  Google Scholar 

  47. Ferrell JE Jr (2009) Signaling motifs and Weber’s law. Mol Cell 36(5):724–727

    Article  PubMed  CAS  Google Scholar 

  48. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of ­beta-­catenin dictates Wnt signaling. Mol Cell 36(5):872–884

    Article  PubMed  CAS  Google Scholar 

  49. Groves JT, Kuriyan J (2010) Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 17:659–665

    Article  PubMed  CAS  Google Scholar 

  50. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M et al (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-­induced senescence. Cancer Cell 19(6):728–739

    Article  PubMed  CAS  Google Scholar 

  51. Zhang H, Li S, Doan T, Rieke F, Detwiler PB, Frederick JM et al (2007) Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer ­segments. Proc Natl Acad Sci U S A 104(21):8857–8862

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe I. H. Bastiaens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zamir, E., Vartak, N., Bastiaens, P.I.H. (2013). Oncogenic Signaling from the Plasma Membrane. In: Yarden, Y., Tarcic, G. (eds) Vesicle Trafficking in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6528-7_3

Download citation

Publish with us

Policies and ethics