Skip to main content

Isolation and Characterization of Prostate Stem Cells

  • Chapter
  • First Online:
Book cover Stem Cells and Prostate Cancer

Abstract

Based on the unique capacity of the rodent prostate to undergo seemingly endless rounds of androgen cycling in response to castration and androgen add-back, the prostate has been proposed to contain long-term self-renewing stem cells. However the prospective isolation and characterization of stem-like cells from rodent and human prostate tissue has only been described over the last 2 decades. Several models of epithelial homeostasis in the adult prostate have been proposed based on either the presence of a multipotent tissue stem cell that differentiates through a series of intermediate developmental stages or the coexistence of multiple unipotent lineage-restricted stem cells. The isolation of cells with stem and progenitor activity is an important first step to delineate the epithelial hierarchy of the prostate. In addition, isolation of stem cells allows characterization of their functional capacities and the molecular programs regulating their activity. These studies will enable detection or targeting of stem and progenitor cells during various stages of neoplastic transformation and tumor progression, including the lethal phase of the disease, castration-resistant prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14:2410–2434

    Article  PubMed  CAS  Google Scholar 

  • Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802

    Article  PubMed  CAS  Google Scholar 

  • Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA (1999) Neurogenic origin of human prostate endocrine cells. Urology 53:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S, Lees CJ, Cramer SD (2008) Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 26:600–610

    Article  PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84:2302–2306

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT (1995) Functional isolation and characterization of human hematopoietic stem cells. Science (New York, NY) 267:104–108

    Article  CAS  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G et al (2009) Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 4:e5722

    Article  PubMed  Google Scholar 

  • Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Basement membranes in fetal, adult ­normal, hyperplastic and neoplastic human prostate. Virchows Archiv 418:375–381

    Article  PubMed  CAS  Google Scholar 

  • Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 102:7180–7185

    Article  PubMed  CAS  Google Scholar 

  • Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D, Wilson EL (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27:2220–2228

    Article  PubMed  CAS  Google Scholar 

  • Choi N, Zhang B, Zhang L, Ittmann M, Xin L (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–265

    Article  PubMed  CAS  Google Scholar 

  • Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114: 3865–3872

    PubMed  CAS  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR, Lung B (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205:181–193

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  • Emonard H, Calle A, Grimaud JA, Peyrol S, Castronovo V, Noel A, Lapiere CM, Kleinman HK, Foidart JM (1987a) Interactions between fibroblasts and a reconstituted basement membrane matrix. J Investig Dermatol 89:156–163

    Article  PubMed  CAS  Google Scholar 

  • Emonard H, Grimaud JA, Nusgens B, Lapiere CM, Foidart JM (1987b) Reconstituted basement-­membrane matrix modulates fibroblast activities in vitro. J Cell Physiol 133:95–102

    Article  PubMed  CAS  Google Scholar 

  • English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242

    Article  PubMed  CAS  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  PubMed  CAS  Google Scholar 

  • Fong CJ, Sherwood ER, Sutkowski DM, Abu-Jawdeh GM, Yokoo H, Bauer KD, Kozlowski JM, Lee C (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19:221–235

    Article  PubMed  CAS  Google Scholar 

  • Fong D, Moser P, Krammel C, Gostner JM, Margreiter R, Mitterer M, Gastl G, Spizzo G (2008a) High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer 99:1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Fong D, Spizzo G, Gostner JM, Gastl G, Moser P, Krammel C, Gerhard S, Rasse M, Laimer K (2008b) TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod Pathol 21:186–191

    PubMed  CAS  Google Scholar 

  • Fuchs E, Horsley V (2011) Ferreting out stem cells from their niches. Nat Cell Biol 13:513–518

    Article  PubMed  CAS  Google Scholar 

  • Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE et al (2009) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. The Prostate

    Google Scholar 

  • Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE et al (2010) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. The Prostate 70: 491–501

    Google Scholar 

  • Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105:20882–20887

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science (New York, NY) 329:568–571

    Article  CAS  Google Scholar 

  • Goldstein AS, Drake JM, Burnes DL, Finley DS, Zhang H, Reiter RE, Huang J, Witte ON (2011) Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat Protoc 6:656–667

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL (2004) Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 7:188–194

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL, O’Hare M, Watt FM, Masters JR (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT (1985) Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model. In: Rodgers CH et al (eds) Benign prostatic hyperplasia. Department of Health and Human Services, Washington, DC, pp 85–94

    Google Scholar 

  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Minami Y, Anami Y, Kondou Y, Iijima T, Kano J, Morishita Y, Tsuta K, Hayashi S, Noguchi M (2010) Expression of the GA733 gene family and its relationship to prognosis in pulmonary adenocarcinoma. Virchows Arch 457:69–76

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 97:13473–13475

    Article  PubMed  CAS  Google Scholar 

  • Lawson DA, Witte ON (2007) Stem cells in prostate cancer initiation and progression. J Clin Invest 117:2044–2050

    Article  PubMed  CAS  Google Scholar 

  • Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104:181–186

    Article  PubMed  CAS  Google Scholar 

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107(6): 2610–2615

    Article  PubMed  CAS  Google Scholar 

  • Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808

    Article  PubMed  CAS  Google Scholar 

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  PubMed  CAS  Google Scholar 

  • Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL, Isaacs JT (2006) Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res 66:8598–8607

    Article  PubMed  CAS  Google Scholar 

  • Lukacs RU, Lawson DA, Xin L, Zong Y, Garraway I, Goldstein AS, Memarzadeh S, Witte ON (2008) Epithelial stem cells of the prostate and their role in cancer progression. Cold Spring Harb Symp Quant Biol 73:491–502

    Article  PubMed  CAS  Google Scholar 

  • Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON (2010a) Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 5:702–713

    Article  PubMed  CAS  Google Scholar 

  • Lukacs RU, Memarzadeh S, Wu H, Witte ON (2010b) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7:682–693

    Article  PubMed  CAS  Google Scholar 

  • Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069

    PubMed  CAS  Google Scholar 

  • Muhlmann G, Spizzo G, Gostner J, Zitt M, Maier H, Moser P, Gastl G, Muller HM, Margreiter R, Ofner D et al (2009) TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol 62:152–158

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H (2009) Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69:8555–8562

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DT, Dey A, Lang RJ, Ventura S, Exintaris B (2011) Contractility and pacemaker cells in the prostate gland. J Urol 185:347–351

    Article  PubMed  Google Scholar 

  • Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science (New York, NY) 333:218–221

    Article  CAS  Google Scholar 

  • Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844–2853

    PubMed  CAS  Google Scholar 

  • Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Tsubura A, Okamura A, Senzaki H, Naka Y, Komatz Y, Morii S (1992) Keratin profiles in normal/hyperplastic prostates and prostate carcinoma. Virchows Archiv 421:157–161

    Article  PubMed  CAS  Google Scholar 

  • Ontiveros CS, Salm SN, Wilson EL (2008) Axin2 expression identifies progenitor cells in the murine prostate. Prostate 68:1263–1272

    Article  PubMed  Google Scholar 

  • Peng W, Bao Y, Sawicki JA (2011) Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells. Transgenic Res 20:1073–1086

    Article  PubMed  CAS  Google Scholar 

  • Ploemacher RE, Brons RH (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol 17:263–266

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  PubMed  CAS  Google Scholar 

  • Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  PubMed  CAS  Google Scholar 

  • Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37:149–160

    Article  PubMed  CAS  Google Scholar 

  • Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106:12771–12775

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Shafik A, Shafik I, el-Sibai O (2005) Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl 51:345–351

    Article  PubMed  CAS  Google Scholar 

  • Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM (2011) Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells (Dayton, Ohio) 29:678–688

    Article  CAS  Google Scholar 

  • Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  PubMed  CAS  Google Scholar 

  • Shen MM, Wang X, Economides KD, Walker D, Abate-Shen C (2008) Progenitor cells for the prostate epithelium: roles in development, regeneration, and cancer. Cold Spring Harb Symp Quant Biol 73:529–538

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Gipp J, Bushman W (2007) Anchorage-independent culture maintains prostate stem cells. Dev Biol 312:396–406

    Article  PubMed  CAS  Google Scholar 

  • Slack JM (2000) Stem cells in epithelial tissues. Science (New York, NY) 287:1431–1433

    Article  CAS  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  PubMed  CAS  Google Scholar 

  • Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science (New York, NY) 241:58–62

    Article  CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer B, Collins AT, Maitland NJ, Risbridger GP (2012) Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells (Dayton, Ohio) 30:1087–1096

    Article  CAS  Google Scholar 

  • Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. FASEB J 10:1249–1256

    PubMed  CAS  Google Scholar 

  • Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Uzgare AR, Xu Y, Isaacs JT (2004) In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 91:196–205

    Article  PubMed  CAS  Google Scholar 

  • Van der Aa F, Roskams T, Blyweert W, De Ridder D (2003) Interstitial cells in the human prostate: a new therapeutic target? Prostate 56:250–255

    Article  PubMed  Google Scholar 

  • Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193

    Article  PubMed  Google Scholar 

  • van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J (2000) Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80:1251–1258

    Article  PubMed  Google Scholar 

  • van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA, De Marzo AM (2003) Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 162:1529–1537

    Article  PubMed  Google Scholar 

  • Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 103:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    Article  PubMed  CAS  Google Scholar 

  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Ide H, Kim Y, Dubey P, Witte ON (2003) In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 100(Suppl 1):11896–11903

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-­regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102:6942–6947

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells(Dayton, Ohio) 25:2760–2769

    Article  CAS  Google Scholar 

  • Xue Y, Smedts F, Debruyne FM, de la Rosette JJ, Schalken JA (1998) Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34:292–301

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Valdez JM, Zhang B, Wei L, Chang J, Xin L (2011) ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One 6:e18271

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Goldstein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goldstein, A.S., Witte, O.N. (2013). Isolation and Characterization of Prostate Stem Cells. In: Cramer, S. (eds) Stem Cells and Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6498-3_2

Download citation

Publish with us

Policies and ethics