Skip to main content

On the Ubiquity of Twisted Sheaves

  • Chapter
  • First Online:

Abstract

We describe some recent work on the uses of twisted sheaves in algebra, arithmetic, and geometry. In particular, we touch on the role of twisted sheaves in:

  1. 1.

    The geometry of the period-index problem for the Brauer group

  2. 2.

    The connection between finiteness of the u-invariant and Colliot-Thélène’s conjecture on 0-cycles

  3. 3.

    The link between the Tate conjecture for K3 surfaces and finiteness of the set of isomorphism classes of K3 surfaces over a finite field

  4. 4.

    The geometry of rational curves on the moduli spaces of supersingular K3 surfaces

Mathematics Subject Classification codes (2000): 14F22, 14H10, 11E81

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra, 36(3): 448–491, (1975).

    Google Scholar 

  2. M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3), 25:75–95, (1972).

    Google Scholar 

  3. M. Artin and H. P. F. Swinnerton-Dyer, The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math., 20:249–266, (1973).

    Google Scholar 

  4. Vikraman Balaji, Indranil Biswas, Ofer Gabber, and Donihakkalu S. Nagaraj, Brauer obstruction for a universal vector bundle, C. R. Math. Acad. Sci. Paris, 345(5): 265–268, (2007).

    Google Scholar 

  5. Vasile Brînzănescu and Ruxandra Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces, Math. Res. Lett., 13(4):501–514, (2006).

    Google Scholar 

  6. Andrei Căldăraru, Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math., 544:161–179, (2002).

    Google Scholar 

  7. François Charles, The Tate conjecture for K3 surfaces over finite fields, arXiv:1206.4002, (2012).

    Google Scholar 

  8. Jean-Louis Colliot-Thélène, Cohomologie galoisienne des corps valués discrets henseliens, d’après K. Kato et S. Bloch, In Algebraic K-theory and its applications (Trieste, 1997), 120–163. World Sci. Publ., River Edge, NJ, 1999.

    Google Scholar 

  9. Jean-Louis Colliot-Thélène, Exposant et indice d’algèbres simples centrales non ramifiées, Enseign. Math. (2) 48(1-2):127–146, (2002). With an appendix by Ofer Gabber.

    Google Scholar 

  10. A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J., 123(1):71–94, (2004).

    Google Scholar 

  11. A. J. de Jong, Xuhua He, and Jason Michael Starr, Families of rationally simply connected varieties over surfaces and torsors for semisimple groups, Publ. Math. Inst. Hautes Études Sci., (114):1–85, (2011).

    Google Scholar 

  12. Aise Johan de Jong, A result of Gabber, Preprint.

    Google Scholar 

  13. Ron Donagi and Tony Pantev, Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc., 193(901):vi+90, (2008). With an appendix by Dmitry Arinkin.

    Google Scholar 

  14. Ofer Gabber, Some theorems on Azumaya algebras, In The Brauer group (Sem., Les Plans-sur-Bex, 1980), volume 844 of Lecture Notes in Math., 129–209. Springer, Berlin, 1981.

    Google Scholar 

  15. Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin, 1971. Die Grundlehren der mathematischen Wissenschaften, Band 179.

    Google Scholar 

  16. Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, In Dix Exposés sur la Cohomologie des Schémas, 46–66. North-Holland, Amsterdam, 1968.

    Google Scholar 

  17. Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, In Dix Exposés sur la Cohomologie des Schémas, 67–87. North-Holland, Amsterdam, 1968.

    Google Scholar 

  18. Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2010.

    Google Scholar 

  19. Daniel Huybrechts and Paolo Stellari, Proof of Căldăraru’s conjecture, Appendix to: “Moduli spaces of twisted sheaves on a projective variety” by K. Yoshioka. In Moduli spaces and arithmetic geometry, volume 45 of Adv. Stud. Pure Math., pages 31–42. Math. Soc. Japan, Tokyo, 2006.

    Google Scholar 

  20. Kazuya Kato, Galois cohomology of complete discrete valuation fields, In Algebraic K-theory, Part II (Oberwolfach, 1980), volume 967 of Lecture Notes in Math., 215–238. Springer, Berlin, 1982.

    Google Scholar 

  21. Serge Lang and John Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80:659–684, (1958).

    Google Scholar 

  22. Serge Lang and André Weil, Number of points of varieties in finite fields, Amer. J. Math. 76:819–827, (1954).

    Google Scholar 

  23. Stephen Lichtenbaum, The period-index problem for elliptic curves, Amer. J. Math. 90: 1209–1223, (1968).

    Google Scholar 

  24. Lieblich, Parimala, and Suresh, Colliot-Thélène’s conjecture and finiteness of u-invariants, arXiv:1209.6418, (2012).

    Google Scholar 

  25. Max Lieblich, Moduli of twisted sheaves, Duke Math. J. 138(1):23–118, (2007).

    Google Scholar 

  26. Max Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144(1):1–31, (2008).

    Google Scholar 

  27. Max Lieblich, Period and index in the Brauer group of an arithmetic surface, J. Reine Angew. Math. 659:1–41, (2011). With an appendix by Daniel Krashen.

    Google Scholar 

  28. Max Lieblich, The period-index problem for fields of transcendence degree 2, arXiv:0909.4345, (2009).

    Google Scholar 

  29. Max Lieblich, The moduli space of supersingular K3 surfaces is uniruled, (2012). Preprint in preparation.

    Google Scholar 

  30. Max Lieblich and Davesh Maulik, A note on the cone conjecture for K3 surfaces in positive characteristic, (2011).

    Google Scholar 

  31. Max Lieblich, Davesh Maulik, and Andrew Snowden, Finiteness of K3 surfaces and the Tate conjecture, (2012).

    Google Scholar 

  32. Shouhei Ma, On the 0-dimensional cusps of the Kähler moduli of a K3 surface, Math. Ann. 348(1):57–80, (2010).

    Google Scholar 

  33. Dimitri Markushevich, Rational Lagrangian fibrations on punctual Hilbert schemes of K3 surfaces, Manuscripta Math. 120(2):131–150, (2006).

    Google Scholar 

  34. Davesh Maulik, Supersingular K3 surfaces for large primes. arXiv:1203.2889, (2012).

    Google Scholar 

  35. James S. Milne, Étale cohomology, volume 33 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1980.

    Google Scholar 

  36. S. Mukai, On the moduli space of bundles on K3 surfaces. I, In Vector bundles on algebraic varieties (Bombay, 1984), volume 11 of Tata Inst. Fund. Res. Stud. Math., 341–413. Tata Inst. Fund. Res., Bombay, 1987.

    Google Scholar 

  37. P. E. Newstead, Introduction to moduli problems and orbit spaces, volume 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay, 1978.

    Google Scholar 

  38. Kieran G. O’Grady, Moduli of vector bundles on projective surfaces: some basic results, Invent. Math. 123(1):141–207, (1996).

    Google Scholar 

  39. Arthur Ogus, A crystalline Torelli theorem for supersingular K3 surfaces, In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., 361–394. Birkhäuser Boston, Boston, MA, 1983.

    Google Scholar 

  40. Raman Parimala and Venapally Suresh, On the length of a quadratic form, In Algebra and number theory, 147–157. Hindustan Book Agency, Delhi, 2005.

    Google Scholar 

  41. Keerthi Madapusi Pera, The Tate conjecture for K3 surfaces on odd characteristic, In preparation.

    Google Scholar 

  42. David J. Saltman, Division algebras over surfaces, J. Algebra 320(4):1543–1585, (2008).

    Google Scholar 

  43. Justin Sawon, Derived equivalence of holomorphic symplectic manifolds, In Algebraic structures and moduli spaces, volume 38 of CRM Proc. Lecture Notes, 193–211. Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  44. Justin Sawon, Lagrangian fibrations on Hilbert schemes of points on K3 surfaces, J. Algebraic Geom. 16(3):477–497, (2007).

    Google Scholar 

  45. Jean-Pierre Serre, Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.

    Google Scholar 

  46. Alexei Skorobogatov, Torsors and rational points, volume 144 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  47. Venipally Suresh, Galois cohomology in degree 3 of function fields of curves over number fields, J. Number Theory, 107(1):80–94, 2004.

    Google Scholar 

  48. John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2:134–144, (1966).

    Google Scholar 

  49. John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, In  Séminaire Bourbaki, Vol. 9, Exp. No. 306, 415–440. Soc. Math. France, Paris, 1995.

    Google Scholar 

  50. Yukinobu Toda, Deformations and Fourier-Mukai transforms, J. Differential Geom. 81(1):197–224, (2009).

    Google Scholar 

  51. Burt Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577:1–22, (2004).

    Google Scholar 

  52. Kōta Yoshioka, Moduli spaces of twisted sheaves on a projective variety, In Moduli spaces and arithmetic geometry, volume 45 of Adv. Stud. Pure Math., 1–30. Math. Soc. Japan, Tokyo, 2006.

    Google Scholar 

  53. Kōta Yoshioka, Fourier-Mukai transform on abelian surfaces, Math. Ann. 345(3):493–524, (2009).

    Google Scholar 

Download references

Acknowledgements

During the writing of this paper, the author was partially supported by a Sloan Fellowship and NSF CAREER grant DMS-1056129. He thanks the referee for helpful comments and the Simons Foundation for its generous support of the Simons Symposia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Lieblich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lieblich, M. (2013). On the Ubiquity of Twisted Sheaves. In: Bogomolov, F., Hassett, B., Tschinkel, Y. (eds) Birational Geometry, Rational Curves, and Arithmetic. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6482-2_10

Download citation

Publish with us

Policies and ethics