Skip to main content

Modularity of Calabi–Yau Varieties: 2011 and Beyond

  • Chapter
  • First Online:
Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

Part of the book series: Fields Institute Communications ((FIC,volume 67))

Abstract

This paper presents the current status on modularity of Calabi–Yau varieties since the last update in 2003. We will focus on Calabi–Yau varieties of dimension at most three. Here modularity refers to at least two different types: arithmetic modularity and geometric modularity. These will include: (1) the modularity (automorphy) of Galois representations of Calabi–Yau varieties (or motives) defined over \(\mathbb{Q}\) or number fields, (2) the modularity of solutions of Picard–Fuchs differential equations of families of Calabi–Yau varieties, and mirror maps (mirror moonshine), (3) the modularity of generating functions of invariants counting certain quantities on Calabi–Yau varieties, and (4) the modularity of moduli for families of Calabi–Yau varieties. The topic (4) is commonly known as geometric modularity.

Discussions in this paper are centered around arithmetic modularity, namely on (1), and (2), with a brief excursion to (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Artebani, S. Boissière, A. Sarti, The Berglund–Hübsch–Chiodo–Ruan mirror symmetry for K3 surfaces [arXiv:1108.2780]

    Google Scholar 

  2. C. Bini, van B. Geemen, Geometry and arithmetic of Maschke’s Calabi–Yau threefold. Comm. Number Theor. Phys. 5(4), 779–826 (2011)

    Google Scholar 

  3. C. Borcea, Calabi–Yau threefolds and complex multiplication, in Essays on Mirror Manifolds (International Press, Boston, 1992), pp. 489–502

    Google Scholar 

  4. C. Borcea, K3 surfaces with involution and mirror pairs of Calabi–Yau manifolds, in Mirror Symmetry. AMS/IP Studies in Advanced Mathematics, vol. 1 (American Mathematical Society, Providence, 1997), pp. 717–743; 33, 227–250 (1983)

    Google Scholar 

  5. J. Bruinier, Hilbert modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext (Springer, Berlin, 2008), pp. 105–179

    Google Scholar 

  6. J. Bruiner, G. van der Geer, G. Harder, D. Zagier, The 1-2-3 of Modular Forms, Universitext (Springer, Berlin, 2008)

    Google Scholar 

  7. Y.-H. Chen, Y. Yang, N. Yui, Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds. J. Reine Angew Math. 616, 167–203 (2008)

    MathSciNet  MATH  Google Scholar 

  8. C. Consani, J. Scholten, Arithmetic on a quintic threefold. Int. J. Math. 12(8), 943–972 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Cynk, C. Meyer, Modularity of some nonrigid double octic Calabi–Yau threefolds. Rocky Mt. J. Math. 38, 1937–1958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deligne, J.S. Milne, A. Ogus, K.-Y. Shih, in Hodge Cycles, Motives and Shimura Varieties. Lecture Notes in Mathematics, vol. 900 (Springer, Berlin, 1982)

    Google Scholar 

  11. L. Dieulefait, On the modularity of rigid Calabi–Yau threefolds. Zap. Nauchn. Sem. S-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377, 44–49 (2010) [Issledovaniya po teorii Chisel. 10]

    Google Scholar 

  12. L. Dieulefait, A. Pacetti, M. Schütt, Modularity of the Consani–Scholten quintic. Documenta Math. 17, 953–987 (2012) [arXiv:1005.4523]

    MATH  Google Scholar 

  13. R. Dijkgraaf, Mirror symmetry and elliptic curves, in The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, Birkhäuser Boston, vol. 129 (1995), pp. 149–163

    MathSciNet  Google Scholar 

  14. I. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces. Algebraic geometry, 4. J. Math. Sci 81(3), 2599–2630 (1996)

    Google Scholar 

  15. C. Doran, Picard–Fuchs uniformization: modularity of the mirror map and mirror-moonshine, in The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. CRM Proceedings of the Lecture Notes, vol. 24 (American Mathematical Society, Providence, 2000), pp. 257–281

    Google Scholar 

  16. T. Eguchi, K. Hikami, Superconformal algebras and mock theta functions. J. Phys. A. 42(30), 304010 (2009)

    MathSciNet  Google Scholar 

  17. T. Eguchi, K. Hikami, Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface. Comm. Number Theor. Phys. 3, 531–554 (2009)

    Google Scholar 

  18. N. Elkies, M. Schütt, Modular forms and K3 surfaces, Adv. Math. 240, 106–131 (2013) [arXiv:0809.0830]

    Article  MathSciNet  Google Scholar 

  19. E. Freitag, R. Salvati Manni, Some Siegel threefolds with a Calabi–Yau model. Ann. Sc. Norm Super. Pisa Cl. Sci. 9, 833–850 (2010); On Siegel threefolds with a projective Calabi–Yau model. Comm. Number Theor. Phys. 5, 713–750 (2011)

    Google Scholar 

  20. A. Garbagnati, New examples of Calabi–Yau 3-folds without maximal unipotent monodromy. Manuscripta Math. 140(3–4), 273–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Garbagnati, B. van Geemen, Examples of Calabi–Yau threefolds parametrized bu Shimura varieties. Rend. Sem. Mat. Univ. Pol. Torino 68, 271–287 (2010)

    MATH  Google Scholar 

  22. Y. Goto, R. Livné, N. Yui, The modularity of certain K3 fibered Calabi–Yau threefolds over \(\mathbb{Q}\) with involution, [arXiv:1212.4308]

    Google Scholar 

  23. F. Gouvêa, N. Yui, Rigid Calabi–Yau threefolds over \(\mathbb{Q}\) are modular. Expos. Math. 29, 142–149 (2011)

    Article  MATH  Google Scholar 

  24. F. Gouvêa, I. Kiming, N. Yui, Quadratic twists of rigid Calabi–Yau threefolds over \(\mathbb{Q}\). In this volume [arXiv: 1111.5275]

    Google Scholar 

  25. H. Hartmann, Period-and mirror maps for the quartic K3 (2011) [arXiv:1101.4601]

    Google Scholar 

  26. K. Hashimoto, T. Terasoma, Period maps of a certain K3 family with an S 5-action. J. Reine Angew Math. 652, 1–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Hulek, H. Verrill, On modularity of rigid and non-rigid Calabi–Yau varieties associated to the root lattice A 4. Nagoya J. Math. 179, 103–146 (2005)

    MathSciNet  MATH  Google Scholar 

  28. K. Hulek, H. Verrill, On the modularity of Calabi–Yau threefolds containing elliptic ruled surfaces, in Mirror Symmetry V. AMS/IP Studies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, 2006), pp. 19–34

    Google Scholar 

  29. C. Khare, J.-P. Wintenberger, Serre’s modularity conjecture, I and II. Invent. Math. 178, 485–504, 505–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kisin, Modularity of 2-adic Barsotti–Tate representations. Invent. Math. 178, 587–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups. J. Math. Soc. Jpn. 44, 75–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Krattenthaler, T. Rivoal, On the integrality of the Taylor coefficients of mirror maps, II. Comm. Number Theor. Phys. 3(3), 555–591 (2009)

    MathSciNet  MATH  Google Scholar 

  33. C. Krattenthaler, T. Rivoal, On the integrality of the Taylor coefficients of mirror maps, I. Duke J. Math. 151(2), 175–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Lee, A modular non-rigid Calabi–Yau threefold, in Mirror Symmetry V. AMS/IP Studies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, 2006), pp. 89–122

    Google Scholar 

  35. E. Lee, A modular quintic Calabi–Yau threefold of level 55. Can. J. Math. 63, 616–633 (2011)

    Article  MATH  Google Scholar 

  36. E. Lee, Update on modular non-rigid Calabi–Yau threefolds, in Modular Forms and String Duality. Fields Institute Communications, vol. 54, (American Mathematical Society, Providence, 2008), pp. 65–81

    Google Scholar 

  37. B.-H. Lian, S.-T. Yau, Mirror maps, modular relations and hypergeometric series, I, in XIth International Congress of Mathematical Physics, Paris 1994 (International Press, Boston, 1995), pp. 163–184

    Google Scholar 

  38. B.-H. Lian, S-T. Yau, Arithmetic properties of mirror maps and quantum coupling. Comm. Math. Phys. 176(1), 163–191 (1996)

    Google Scholar 

  39. B.-H. Lian, S.-T. Yau, Mirror maps, modular relations and hypergeometric series, II. Nucl. Phys. B Proc. Suppl. 46, 248–262 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Livńe, Motivic orthogonal two-dimensional representations of \(Gal(\bar{\mathbb{Q}}/\mathbb{Q})\). Isr. J. Math. 92, 149–156 (1995)

    Article  MATH  Google Scholar 

  41. R. Livné, M. Schuett, N. Yui, The modularity of K3 surfaces with non-symplectic group action. Math. Ann. 348, 333–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Long, On Shioda–Inose structures of one-parameter families of K3 surfaces. J. Number Theor. 109, 299–318 (2004)

    Article  MATH  Google Scholar 

  43. S. Ma, Rationality of the moduli spaces of 2-elementary K3 surfaces, J. Alg. Geom. (to appear) [arXiv:11105.5110]

    Google Scholar 

  44. C. Meyer, in Modular Calabi–Yau Threefolds. Fields Institute Monograph, vol. 22 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  45. T. Milanov, Y. Ruan, Gromov–Witten theory of elliptic orbifold \({\mathbb{P}}^{1}\) and quasi-modular forms [arXiv:1106.2321]

    Google Scholar 

  46. D. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75, 105–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications. Math. USSR-Izv. 14, 103–167 (1980)

    Article  MATH  Google Scholar 

  48. V. Nikulin, Discrete reflection groups in Lobachesvsky spaces and algebraic surfaces, in Proceedings of the ICM, Berkeley, CA, 1986, pp. 654–671

    Google Scholar 

  49. H. Ochiai, Counting functions for branched covers of elliptic curves and quasimodular forms. RIMS Kokyuroko 1218, 153–167 (2001)

    MathSciNet  MATH  Google Scholar 

  50. M. Reid, Cananical 3-folds, Proceedings of Algebraic Geometry, Anger (Sijthoff and Nordhoff, Alphen aan den Rijn, Netherlands, 1979), pp. 273–310

    Google Scholar 

  51. C. Rohde, in Cyclic Coverings, Calabi–Yau Manifolds and Complex Multiplication. Lecture Notes in Mathematics vol. 1975 (Springer, Berlin, 2009)

    Google Scholar 

  52. S. Rose, Counting hyperelliptic curves on an abelian surface with quasi-modular forms [arXiv:1202.2094]

    Google Scholar 

  53. M. Roth, N. Yui, Mirror symmetry for elliptic curves: the A-model (Fermionic) counting. Clay Math. Proc. 12, 245–283 (2010)

    MathSciNet  Google Scholar 

  54. M. Schütt, On the modularity of three Calabi–Yau threefolds with bad reduction at 11. Can. Math. Bull. 49, 296–312 (2006)

    Article  MATH  Google Scholar 

  55. M. Schütt, Modularity of Maschke’s octic and Calabi–Yau threefold. Comm. Number Theor. Phys. 5(4), 827–848 (2011)

    MATH  Google Scholar 

  56. M. Schütt, Two Lectures on the Arithmetic of K3 Surfaces, in this volume

    Google Scholar 

  57. J. Tate, Conjectures on algebraic cycles in -adic cohomology, in Motives, Proceedings of Symposia in Pure Mathematics, vol. 55, Part I (American Mathematical Society, Providence, 1994), pp. 71–83

    Google Scholar 

  58. G. van der Geer, Siegel modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext (Springer, Berlin, 2008), pp. 181–245

    Google Scholar 

  59. C. van Enckevort, D. van Straten, Monodromy calculations of fourth order equations of Calabi–Yau type, in Mirror Symmetry V. Proceedings of BIRS Workshop on Calabi–Yau Varieties and Mirror Symmetry, 6–11 December, 2003. AMS/IP Studies in Advanced Mathematics, vol. 38 (2006), pp. 530–550

    Google Scholar 

  60. B. van Geemen, N. Nygaard, On the geometry and arithmetic of some Siegel modular threefolds. J. Number Theor. 53, 45–87 (1995)

    Article  MATH  Google Scholar 

  61. C. Voisin, Mirrors et involutions sur les surfaces K3. Astérisque 218, 273–323 (1993)

    MathSciNet  Google Scholar 

  62. S.P. Vorontsov, Automorphisms of even lattices arising in connection with automorphisms of algebraic K3 surfaces (Russian). Vestnik Moskov. Uni. Ser. I Mat. Mekh. (2), 19–21 (1983)

    MathSciNet  Google Scholar 

  63. Y. Yang, N. Yui, Differential equations satisfied with modular forms and K3 surfaces. Ill. J. Math. 51(2), 667–696 (2007)

    MathSciNet  MATH  Google Scholar 

  64. H. Yonemura, Hypersurface simple K3 singularities. Tôhoku J. Math. 42, 351–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  65. N. Yui, Update on the modularity of Calabi–Yau varieties, in Calabi–Yau Varieties and Mirror Symmetry. Fields Institute Communications, vol. 38 (American Mathematical Society, Providence, 2003), pp. 307–362

    Google Scholar 

  66. Yu.G. Zarhin, Hodge groups of K3 surfaces J. Reine Angew. Math. 341, 193–220 (1983)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Matthias Schütt for carefully reading the preliminary version of this paper and suggesting numerous improvements. I am indebted to Ron Livné for answering my questions about Galois representations.

I would also like to thank a number of colleagues for their comments and suggestions. This includes Jeng-Daw Yu, Ling Long, Ken-Ichiro Kimura, and Bert van Geemen.

We are grateful to V. Nikulin for allowing us to use the template of Nikulin’s pryamid in Fig. 1.

Last but not least, my sincere thanks is to the referee for reading through the earlier versions of this article and for very helpful constructive criticism and suggestions for the improvement of the article. I would also like to thank Arther Greenspoon of Mathematical Reviews for copy-editing the article.

The article was completed while the author held visiting professorship at various institutions in Japan: Tsuda College, Kavli Institute for Physics and Mathematics of the Universe, and Nagoya University. I thank the hospitality of these instutions.

The author was supported in part by NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Yui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yui, N. (2013). Modularity of Calabi–Yau Varieties: 2011 and Beyond. In: Laza, R., Schütt, M., Yui, N. (eds) Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Fields Institute Communications, vol 67. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6403-7_4

Download citation

Publish with us

Policies and ethics