Skip to main content

Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties

  • Chapter
  • First Online:
Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

Part of the book series: Fields Institute Communications ((FIC,volume 67))

Abstract

We review the transcendental aspects of algebraic cycles, and explain how this relates to Calabi–Yau varieties. More precisely, after presenting a general overview, we begin with some rudimentary aspects of Hodge theory and algebraic cycles. We then introduce Deligne cohomology, as well as the generalized higher cycles due to Bloch that are connected to higher K-theory, and associated regulators. Finally, we specialize to the Calabi–Yau situation, and explain some recent developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strict compatibility means that \(h({F}^{r}V _{1,\mathbf{C}}) = h(V _{1,\mathbf{C}}) \cap {F}^{r}V _{2,\mathbf{C}}\) and \(h(W_{\ell}V _{1,\mathbf{A}\otimes \mathbf{Q}}) = h(V _{1,\mathbf{A}\otimes \mathbf{Q}}) \cap W_{\ell}V _{2,\mathbf{A}\otimes \mathbf{Q}}\) for all r and . A nice explanation of Deligne’s proof of this fact can be found in [44], where a quick summary goes as follows: For any A-MHS V, V C has a C-splitting into a bigraded direct sum of complex vector spaces \({I}^{p,q} := {F}^{p} \cap W_{p+q} \cap \big [\overline{{F}^{q}} \cap W_{p+q} +\sum _{i\geq 2}\overline{{F}^{q-i+1}} \cap W_{p+q-i}\big]\), where one shows that \({F}^{r}V _{\mathbf{C}} = \oplus _{p\geq r} \oplus _{q}{I}^{p,q}\) and \(W_{\ell}V _{\mathbf{C}} = \oplus _{p+q\leq \ell}{I}^{p,q}\). Then by construction of I p, q, one has \(h({I}^{p,q}(V _{1,\mathbf{C}}) \subseteq {I}^{p,q}(V _{2,\mathbf{C}})\). Hence h preserves both the Hodge and complexified weight filtrations. Now use the fact that A ⊗ Q is a field to deduce that h preserves the weight filtration over A ⊗ Q.

  2. 2.

    The fact that a smooth connected Γ will suffice (as opposed to a [connected] chain of curves) in the definition of algebraic equivalence follows from the transitive property of algebraic equivalence (see [36] (p. 180)).

  3. 3.

    We remind the reader that for singular homology H  ∗  sing(U, Z) and ignoring twists, Poincaré duality gives the isomorphism \(H_{c}^{i}(U,\mathbf{Z}) \simeq H_{2d-i}^{sing}(U,\mathbf{Z})\), where H c i(U, Z) is cohomology with compact support; whereas \({H}^{i}(U,\mathbf{Z}) \simeq H_{2d-i}^{BM}(U,\mathbf{Z})\).

  4. 4.

    A special thanks to Rob de Jeu for supplying us this idea.

  5. 5.

    Matt Kerr informed us of an alternate and slick approach to this example via the definition given in Example 4.7(ii). Namely one need only add Tame\(\{z_{1}/z_{0},z_{2}/z_{0}\} = (-f_{0}^{-1},\ell_{0}) + (f_{1}^{-1},\ell_{1}) + (f_{2}^{-1},\ell_{2})\) to ξ to get the 2-torsion class ( − 1,  0), which is the same as ξ in CH2(P 2, 1).

  6. 6.

    Indeed first consider \((a,b) \in \Omega _{X}^{r} \oplus \Omega _{X}^{r-1}\ \mathop{\mapsto }\limits \delta \ (-da,db - a) \in \Omega _{X}^{r+1} \oplus \Omega _{X}^{r}\). Then δ(a, b) = (0, 0) ⇔ da = 0 & a = db ⇔ a = db. Therefore \(\ker \delta /\mathrm{Im}(0,d) \simeq \Omega _{X}^{r-1}/d\Omega _{X}^{r-2} = {\mathcal{H}}^{r-1}(\mathbf{A}_{\mathcal{D}}(r))\). Next, for j ≥ 1, \((a,b) \in \Omega _{X}^{r+j} \oplus \Omega _{X}^{r+j-1}\), δ(a, b) = 0 ⇔ (a, b) = δ( − b, 0).

  7. 7.

    The reader familiar with Deligne homology will see this definition as the same thing up to twist. Indeed this definition already incorporates Poincaré duality.

  8. 8.

    Y is a normal crossing divisor, which in local analytic coordinates (z 1, , z d ) on X, Y is given by z 1z  = 0, and so Ω X 1Y ⟩ has local frame \(\big\{dz_{1}/z_{1},\ldots,dz_{\ell}/z_{\ell},dz_{\ell+1},\ldots,dz_{d}\big\}\).

  9. 9.

    For compactly supported ω ∈ E U, c 2d − 1, and \(f \in \mathcal{O}_{U}^{\times }(U)\),

    $$\displaystyle{\int _{U}\frac{df} {f} \wedge \omega =\int _{U}d\big(\log f\wedge \omega \big) -\int _{U\setminus {f}^{-1}[-\infty,0]}\log f \wedge d\omega = 2\pi \mathrm{i}\int _{{f}^{-1}[-\infty,0]}\omega + d[\log f](\omega ),}$$

    where we use the principal branch of log.

  10. 10.

    The decision to consider the factor (2πi) − 1 is somewhat “political”, as reflected in the remark on page 2 of [32]. From a cohomological point of view, one works with Z(2) coefficient periods, whereas homologically, is it with Z(1) coefficients. This is neatly illustrated via the Poincaré duality isomorphism in (16).

  11. 11.

    Alternatively, taking Re\(\big({(2\pi \mathrm{i})}^{-1}\tilde{R}\big)\) gives the formula in (15), viz., with the factor (2π) − 1, right on the nose.

  12. 12.

    M. Asakura informed me of his work in [1], which includes this theorem as a special case. Further he provides an upper bound for the rank of the dlog image for variants of the family in Example 8.25.

References

  1. M. Asakura, On dlog Image of K 2 of Elliptic Surface Minus Singular Fibers, preprint (2006) [arXiv:math/0511190v4]

    Google Scholar 

  2. H. Bass, J. Tate, in The Milnor Ring of a Global Field, in Algebraic K-Theory II. Lecture Notes in Mathematics, vol. 342 (Springer, New York, 1972), pp. 349–446

    Google Scholar 

  3. A. Beilinson, Notes on absolute Hodge cohomology, in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory. Contemporary Mathematics, vol. 55, Part 1 (AMS, Providence 1986), pp. 35–68

    Google Scholar 

  4. A. Beilinson, Higher regulators of modular curves, in Applications of K-Theory to Algebraic Geometry and Number Theory, Boulder, CO, 1983. Contemporary Mathematics, vol. 55 (AMS, Providence, 1986), pp. 1–34

    Google Scholar 

  5. S. Bloch, Lectures on Algebraic Cycles. Duke University Mathematics Series, vol. IV (Duke University, Durham, 1980)

    Google Scholar 

  6. S. Bloch, Algebraic cycles and higher K-theory. Adv. Math. 61, 267–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bloch, V. Srinivas, Remarks on correspondences and algebraic cycles. Am. J. Math. 105, 1235–1253 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Carlson, Extension of mixed Hodge structures, in Journées de Géométrie Algébrique d’Angers 1979 (Sijthoff and Nordhoff, The Netherlands, 1980), pp. 107–127

    Google Scholar 

  9. X. Chen, J.D. Lewis, Noether-Lefschetz for K 1 of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3) 10(1), 29–41 (2004)

    Google Scholar 

  10. X. Chen, J.D. Lewis, The Hodge\(-\mathcal{D}-\)conjecture for K3 and Abelian surfaces. J. Algebr. Geom. 14(2), 213–240 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Chen, J.D. Lewis, Density of rational curves on K3 surfaces. Math. Ann. [arXiv:1004.5167] (2011)

    Google Scholar 

  12. X. Chen, C. Doran, M. Kerr, J.D. Lewis, Higher normal functions, derivatives of normal functions, and elliptic fibrations (2011) (submitted) [arXiv:1108.2223]

    Google Scholar 

  13. C.H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. I.H.E.S. 58, 19–38 (1983)

    Google Scholar 

  14. A. Collino, Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic jacobians. J. Algebr. Geom. 6, 393–415 (1997)

    MathSciNet  MATH  Google Scholar 

  15. R. de Jeu, J.D. Lewis, Beilinson’s Hodge conjecture for smooth varieties, J. of K-Theor. [arXiv:1104.4364] (2011)

    Google Scholar 

  16. P. Deligne, Théorie de Hodge, II, III. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971); 44, 5–77 (1974)

    Google Scholar 

  17. P. Elbaz-Vincent, S. Müller-Stach, Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148, 177–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Esnault, K.H. Paranjape, Remarks on absolute de Rham and absolute Hodge cycles. C. R. Acad. Sci. Paris t 319, Serie I, 67–72 (1994)

    Google Scholar 

  19. H. Esnault, E. Viehweg, Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 43–91

    Google Scholar 

  20. R. Friedman, R. Laza, Semi-algebraic horizontal subvarieties of Calabi-Yau type, preprint 2011 [arXive:1109.5632v1]

    Google Scholar 

  21. B.B. Gordon, J.D. Lewis, Indecomposable higher Chow cycles, in The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. Nato Science Series C: Mathematical and Physical Sciences, vol. 548 (Kluwer, Dordrecht, 2000), pp. 193–224

    Google Scholar 

  22. M. Green, Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29, 545–555 (1989)

    MATH  Google Scholar 

  23. M. Green, P. Griffiths, The regulator map for a general curve, in Symposium in Honor of C.H. Clemens, Salt Lake City, UT, 2000. Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, 2002), pp. 117–127

    Google Scholar 

  24. M. Green, S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Comp. Math. 100(3), 305–309 (1996)

    MATH  Google Scholar 

  25. P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978)

    MATH  Google Scholar 

  26. P.A. Griffiths, On the periods of certain rational integrals: I and II. Ann. Math. 90, 460–541 (1969)

    Article  MATH  Google Scholar 

  27. U. Jannsen, Deligne cohomology, Hodge\(-\mathcal{D}-\)conjecture, and motives, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 305–372

    Google Scholar 

  28. U. Jannsen, in Mixed Motives and Algebraic K-Theory. Lecture Notes in Mathematics, vol. 1000 (Springer, Berlin, 1990)

    Google Scholar 

  29. B. Kahn, Groupe de Brauer et (2, 1)-cycles indecomposables. Preprint (2011)

    Google Scholar 

  30. K. Kato, Milnor K-theory and the Chow group of zero cycles. Contemp. Math. Part I 55, 241–253 (1986)

    Article  Google Scholar 

  31. M. Kerr, J.D. Lewis, The Abel-Jacobi map for higher Chow groups, II. Invent. Math. 170(2), 355–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Kerr, J.D. Lewis, S. Müller-Stach, The Abel-Jacobi map for higher Chow groups. Compos. Math. 142(2), 374–396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kerz, The Gersten conjecture for Milnor K-theory. Invent. Math. 175(1), 1–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. King, Log complexes of currents and functorial properties of the Abel-Jacobi map. Duke Math. J. 50(1), 1–53 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Levine, Localization on singular varieties. Invent. Math. 31, 423–464 (1988)

    Article  Google Scholar 

  36. J.D. Lewis, in A Survey of the Hodge Conjecture, 2nd edn. Appendix B by B. Brent Gordon. CRM Monograph Series, vol. 10 (American Mathematical Society, Providence, 1999), pp. xvi+368

    Google Scholar 

  37. J.D. Lewis, Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana (3) 7(2), 137–192 (2001)

    Google Scholar 

  38. J.D. Lewis, Real regulators on Milnor complexes. K-Theory 25(3), 277–298 (2002)

    Google Scholar 

  39. J.D. Lewis, Regulators of Chow cycles on Calabi-Yau varieties, in Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001. Fields Institute Communications, vol. 38 (American Mathematical Society, Providence, 2003), pp. 87–117

    Google Scholar 

  40. S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Algebr. Geom. 6, 513–543 (1997)

    MATH  Google Scholar 

  41. S. Müller-Stach, Algebraic cycle complexes, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles, vol. 548, ed. by J.D. Lewis, N. Yui, B. Gordon, S. Müller-Stach, S. Saito (Kluwer, Dordrecht, 2000), pp. 285–305

    Google Scholar 

  42. D. Ramakrishnan, Regulators, algebraic cycles, and values of L-functions, in Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, 1989), pp. 183–310

    Google Scholar 

  43. M. Raynaud, Courbes sur une variété abélienne et points de torsion. Invent. Math. 71, 207–233 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.H.M. Steenbrink, in A Summary of Mixed Hodge Theory, Motives, Seattle, WA, 1991. Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1 (American Mathematical Society, Providence, 1994), pp. 31–41

    Google Scholar 

  45. C. Voisin, The Griffiths group of a general Calabi-Yau threefold is not finitely generated. Duke Math. J. 102(1), 151–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, J.D. (2013). Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties. In: Laza, R., Schütt, M., Yui, N. (eds) Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Fields Institute Communications, vol 67. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6403-7_2

Download citation

Publish with us

Policies and ethics