Skip to main content

On a Family of K3 Surfaces with \(\mathcal{S}_{4}\) Symmetry

  • Chapter
  • First Online:
Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

Part of the book series: Fields Institute Communications ((FIC,volume 67))

Abstract

The largest group which occurs as the rotational symmetries of a three-dimensional reflexive polytope is S 4. There are three pairs of three- dimensional reflexive polytopes with this symmetry group, up to isomorphism. We identify a natural one-parameter family of K3 surfaces corresponding to each of these pairs, show that S 4 acts symplectically on members of these families, and show that a general K3 surface in each family has Picard rank 19. The properties of two of these families have been analyzed in the literature using other methods. We compute the Picard–Fuchs equation for the third Picard rank 19 family by extending the Griffiths–Dwork technique for computing Picard–Fuchs equations to the case of semi-ample hypersurfaces in toric varieties. The holomorphic solutions to our Picard–Fuchs equation exhibit modularity properties known as “Mirror Moonshine”; we relate these properties to the geometric structure of our family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Batyrev, D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bini, B. van Geemen, T.L. Kelly, Mirror quintics, discrete symmetries and Shioda maps. J. Algebr. Geom. 21(3), 401–412 (2012)

    Article  MATH  Google Scholar 

  3. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system, I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Clingher, C. Doran, Modular invariants for lattice polarized K3 surfaces. Mich. Math. J. 55(2), 355–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Clingher, C. Doran, J. Lewis, U. Whitcher, Normal forms, K3 surface moduli, and modular parametrizations, in CRM Proceedings and Lecture Notes, vol. 47 Amer. Math. Soc., Providence, RI, (2009), pp. 81–98

    Google Scholar 

  6. D. Cox, S. Katz, Mirror Symmetry and Algebraic Geometry (American Mathematical Society, Providence, 1999)

    MATH  Google Scholar 

  7. I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces. Algebraic geometry, 4. J. Math. Sci. 81(3), 2599–2630 (1996)

    Google Scholar 

  8. C. Doran, Picard-Fuchs uniformization and modularity of the mirror map. Comm. Math. Phys. 212(3), 625–647 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Doran, B. Greene, S. Judes, Families of quintic Calabi-Yau 3-folds with discrete symmetries. Comm. Math. Phys. 280(3), 675–725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Garbagnati, Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms (2009) [arXiv:0904.1519]

    Google Scholar 

  11. A. Garbagnati, Symplectic automorphisms on Kummer surfaces. Geometriae Dedicata 145, 219–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Garbagnati, The Dihedral group \(\mathcal{D}_{5}\) as group of symplectic automorphisms on K3 surfaces. Proc. Am. Math. Soc. 139(6), 2045–2055 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces. J. Algebra 318(1), 323–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Greene, M. Plesser, Duality in Calabi-Yau moduli space. Nucl. Phy. B. 338(1), 15–37 (1990)

    Article  MathSciNet  Google Scholar 

  15. K. Hashimoto, Period map of a certain K3 family with an \(\mathcal{S}_{5}\)-action. J. Reine Angew. Math. 652, 1–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. G.H. Hitching, Quartic equations and 2-division on elliptic curves (2007) [arXiv:0706.4379]

    Google Scholar 

  17. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, in Mirror Symmetry. Clay Mathematics Monographs, vol. 1 (American Mathematical Society/Clay Mathematics Institute, Providence/Cambridge, 2003)

    Google Scholar 

  18. S. Hosono, B.H. Lian, K. Oguiso, S.-T. Yau, Autoequivalences of derived category of a K3 surface and monodromy transformations. J. Algebr. Geom. 13(3), 513–545 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Kondō, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces. With an appendix by Shigeru Mukai. Duke Math. J. 92(3), 593–603 (1998)

    Article  MATH  Google Scholar 

  20. M. Kreuzer, Calabi-Yau 4-folds and toric fibrations. J. Geom. Phys. 26, 272–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kuwata, T. Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface, in Algebraic Geometry in East Asia – Hanoi 2005. Advanced Studies in Pure Mathematics, vol. 50 (Mathematical Society of Japan, Tokyo, 2008), pp. 177–215

    Google Scholar 

  22. B.H. Lian, J.L. Wiczer, Genus zero modular functions (2006), http://people.brandeis.edu/∖∼lian/Schiff.pdf. Accessed March 2013

  23. B.H. Lian, S.-T. Yau, Mirror maps, modular relations and hypergeometric series I. Appeared as “Integrality of certain exponential series”, in Lectures in Algebra and Geometry, ed. by M.-C. Kang. Proceedings of the International Conference on Algebra and Geometry, Taipei, 1995 (International Press, Cambridge, 1998), pp. 215–227

    Google Scholar 

  24. C. Luhn, P. Ramond, Quintics with finite simple symmetries. J. Math. Phys. 49(5) 053525, 14 (2008)

    Google Scholar 

  25. A. Mavlyutov, Semiample hypersurfaces in toric varieties. Duke Math. J. 101(1), 85–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Mukai, Finite groups of automorphisms and the Mathieu group. Invent. Math. 94(1), 183–221 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces. Trans. Mosc. Math. Soc. 38(2), 71–135 (1980)

    Google Scholar 

  28. K. Oguiso, D.-Q. Zhang, The simple group of order 168 and K3 surfaces, in Complex Geometry, Göttingen, 2000 (Springer, Berlin, 2002)

    Google Scholar 

  29. C. Peters, J. Stienstra, A pencil of K3-surfaces related to Apéry’s recurrence for ζ(3) and Fermi surfaces for potential zero, in Arithmetic of Complex Manifolds, Erlangen, 1988 (Springer, Berlin, 1989)

    Google Scholar 

  30. M. Singer, Algebraic relations among solutions of linear differential equations: Fano’s theorem. Am. J. Math. 110, 115–143 (1988)

    Article  MATH  Google Scholar 

  31. J.P. Smith, Picard-Fuchs Differential Equations for Families of K3 Surfaces, University of Warwick, 2006 [arXiv:0705.3658v1] (2007)

    Google Scholar 

  32. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular Functions of One Variable IV. Lecture Notes in Mathematics, vol. 476 (Springer, Berlin, 1975), pp. 33–52

    Google Scholar 

  33. H. Verrill, Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36(2), 423–446 (1996)

    MathSciNet  MATH  Google Scholar 

  34. H. Verrill, N. Yui, Thompson series, and the mirror maps of pencils of K3 surfaces, in The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. CRM Proceedings Lecture Notes, vol. 24 (AMS, Providence, 2000), pp. 399–432

    Google Scholar 

  35. U. Whitcher, Symplectic automorphisms and the Picard group of a K3 surface. Comm. Algebra 39(4), 1427–1440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Xiao, Galois covers between K3 surfaces. Ann. l’Institut Fourier 46(1), 73–88 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by the NSF Grant No. OISE-0965183. The third, fourth, and fifth authors were supported in part by No. DMS-0821725. The authors thank Andrey Novoseltsev for thoughtful discussion of computational techniques and Charles Doran for inspirational conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Whitcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, D., Lewis, J., Moore, D., Skjorshammer, D., Whitcher, U. (2013). On a Family of K3 Surfaces with \(\mathcal{S}_{4}\) Symmetry. In: Laza, R., Schütt, M., Yui, N. (eds) Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Fields Institute Communications, vol 67. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6403-7_12

Download citation

Publish with us

Policies and ethics