Skip to main content

Signal Transduction and Regulatory Networks in Plant-Pathogen Interaction: A Proteomics Perspective

  • Chapter
  • First Online:

Abstract

Plant diseases are amongst the major limiting factors of crop production worldwide. They devastate not only food supply, but also the economy of a nation. Depending upon the time of infection and severity of the disease, they can cause average yield loss of about 10–90%. Keeping in view of the global food scarcity, there is, an urgent need to develop crop plants with improved biotic stress tolerance so as to meet the global food demands. A detailed study of the molecular interactions between crops plants and their pathogens would, therefore, be of primary importance for devising new strategies based on plants self defense mechanisms to develop crops with increased disease tolerance for sustainable agricultural production.

Upon pathogen attack, plant defense responses involve modulations in the expression of a large number of genes. These include alteration or modification of cellular metabolism, accumulation of barrier forming substances (thickening of cell walls) and production of anti microbial compounds. Many of the signaling molecules including a number of protein kinases and phosphatases have been identified in plants during pathogen attack and invasion. These are involved in plant defense responses. To understand the regulatory networks and signal transduction in plant pathogen interaction, there is no other alternative except proteomics for evaluating proteins which are directly responsible for cellular responses. Recent developments in proteome analysis and availability of genome as well as EST (expressed sequence tag) sequence data of some crop plants have led to the significant progress in the functional characterization of plant pathogen related responses. With whole proteome profile of some crop plants now being available, various kinds of plant-pathogen interactions will be unraveled in near future. The technical advances in mass spectrometry, up-gradation in other proteomic tools, and progress in bioinformatics will have a substantial impact on our understanding the regulatory networks and signal transduction in plant- pathogen interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adie B, Chico JM, Rubio-Somoza I, Solano R (2007) Modulation of plant defenses by ethylene. J Plant Growth Regul 26:160–177

    Article  CAS  Google Scholar 

  • Alvarez ME, Pennel RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Ananieva KI, Ananiev ED (1999) Effect of methyl ester of jasmonic acid and benzylaminopurine on growth and protein profile of excised cotyledons of Cucurbita pepo (zucchini). Biol Plant 42:549–557

    Article  CAS  Google Scholar 

  • Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Elerstrom M (2006) Phopspholipase‑dependent signaling during the AvrRpm1 and AvrRpt2—Induced disease resistance response in Arabidopsis thaliana. Plant J 47:947–949

    Article  PubMed  CAS  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT (1996) Syringolide 1 triggers Ca + influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease resistance gene Rpg4. Plant Physiol 112:297–302

    PubMed  CAS  Google Scholar 

  • Bach M, Schnitzler JP, Ulrich H (1993) Elicitor-induced changes in Ca+ influx, K+ efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota. Plant Physiol 103:407–412

    PubMed  CAS  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118

    Article  PubMed  CAS  Google Scholar 

  • Beffa R, Szell M, Meuwly P, Pay A, Vogeli-Lange R, Métraux JP, Neuhaus G, Meins F, Nagy J, Nagy F (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 14:5753–5761

    PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell 9:209–221

    PubMed  CAS  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defence. Curr Opin Plant Biol 2:287–294

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Rad Res 23:517–532

    Article  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    PubMed  CAS  Google Scholar 

  • Campo S, Carrascal M, Coca M, Abian J, San SB (2004) The defence response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4:383–396

    Article  PubMed  CAS  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18

    Article  PubMed  CAS  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272:28274–28280

    Article  PubMed  CAS  Google Scholar 

  • Chen CH (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J 413:217–226

    Article  PubMed  CAS  Google Scholar 

  • Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F (2004) Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55:109–120

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona L, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    Article  CAS  Google Scholar 

  • de Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808–816

    Article  PubMed  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CM (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernoij B, Friedrich L, Weyman K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 382:213–217

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Neill SJ, Hancock JT (1997) Generation of active oxygen in Arabidopsis thaliana. Phyton 37:65–70

    CAS  Google Scholar 

  • Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49:1767–1771

    Article  CAS  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis MAP kinasesATMPK4 and ATMPK6. Plant Physiol 126:1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Dhondt S, Gouzerh G, Müller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  PubMed  CAS  Google Scholar 

  • Doke N (1983a) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  • Doke N (1983b) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestan and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Doke N, Ohashi Y (1988) Involvement of an O2- generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Pathol 32:163–175

    Article  CAS  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  • Droillard MJ, Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574:42–48

    Article  PubMed  CAS  Google Scholar 

  • Durner D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact 13:347–351

    Article  Google Scholar 

  • Dwyer SC, Legendre L, Low PS, Leto TL (1996) Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochem Biophys Acta 1289:231–237

    Article  PubMed  Google Scholar 

  • Ebel J, Scheel D (1997) Signals in host–parasite interactions. In: Carroll GC, Tudzynski P (eds) The mycota, vol V, Plant relationships, Part A. Springer, Berlin, pp 85–105

    Chapter  Google Scholar 

  • Everberg H, Gustavasson N, Tjerned F (2008) Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems. Met Mol Biol 424:403–412

    Article  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 26:754–756

    Article  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger B (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  PubMed  CAS  Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+−permeable channels by race-specific fungal elicitors. Plant Physiol 113:269–279

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: a LRR receptor-like kinase involved in recognition of the flagellin elicitor in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Green R, Fluhr R (1995) UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7:203–212

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D, Logemenn E, Nrnberger T, Papniske M, Reinold S, Sacks WR, Schmelzer E (1995) Oligopeptide elicited defense gene activation in cultured parsley cells. Proc Natl Acad Sci USA 92:4150–4157

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (2000) Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiology, Maryland, pp 1102–1156

    Google Scholar 

  • Hancock JT, Desikan R, Clarke A, Hurst RD, Neill SJ (2002) Cell signaling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611–617

    Article  CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2:11–15

    Article  Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene. Proc Natl Acad Sci USA 94(9):4800–4805

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Reports 5:572–578

    Google Scholar 

  • Jones AME, Bennett MH, Mansfield JW, Grant M (2006) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6:4155–4165

    Article  PubMed  CAS  Google Scholar 

  • Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfil MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  CAS  Google Scholar 

  • Khush GS (2001) Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc 60:15–26

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han CD, Bae DW, Nam MH, Kang KY (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Koeduka T, Matsui K, Hasegawa M, Akakabe Y, Kajiwara T (2005) Rice fatty acid alpha-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. J Plant Physiol 162:912–920

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Ishiguro K, Komatsu S (2001) A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Kuchitsu K, Kikuyama M, Shibuya N (1993) N-acetylchitooligosaccharides, biotic elicitors for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174:79–81

    Article  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Larson RL, Wintermantel WM, Hill A, Fortis L, Nunez A (2008) Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiol Mol Plant Pathol 72:62–72

    Article  CAS  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–588

    PubMed  CAS  Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signaling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux-Ouaked F, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant Microbe Interact 13:821–829

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Bricker TM, Lefevre M, Pinson SRM, Oard JH (2006) Proteomic and genetic approaches to identify defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Mol Plant Pathol 7:405–416

    Article  PubMed  CAS  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: Nitric oxide signaling in plant defence. Curr Opin Plant Biol 12:451–458

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Rojo E, Titarenko E, Sanchez-Serrano JJ (1998) Jasmonic acid-dependent and independent wound signal transducyion pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Mol Gen Genet 258:412–419

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–595

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NNV (2008) Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agri Food Chem 56:1963–1976

    Article  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    Article  PubMed  CAS  Google Scholar 

  • Llorente F, Alonso-Blanco C, Sanchez-Rodriguez C, Jorda L, Molina A (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43:165–180

    Article  PubMed  CAS  Google Scholar 

  • Long DH, Lee FN, TeBeest DO (2000) Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis 84:403–409

    Article  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense responsive proteins in rice leaf blades. Proteomics 6:6053–6065

    Article  PubMed  CAS  Google Scholar 

  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8:399–404

    Article  PubMed  CAS  Google Scholar 

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Marsh JF, Kaufman LS (1999) Cloning and characterization of PGA1 and PGA2: Two G protein α‑subunits from pea that promote growth in the yeast Saccharomyces cerevisiae. Plant J 19:237–247

    Article  PubMed  CAS  Google Scholar 

  • Mathieu Y, Kurkjian A, Xia H, Guern J, Spiro M, O'Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343

    Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25:79–82

    Article  PubMed  CAS  Google Scholar 

  • Mithoe SC, Menke FLH (2011) Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochem 72:997–1006

    Article  CAS  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Uri F, Parthier B, Nover L (1988) Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis. Planta 176:241–247

    Article  CAS  Google Scholar 

  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110:387–392

    PubMed  CAS  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430–438

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Ong S, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signaling–50 years and counting. Trends Biochem Sci 30:286–290

    Article  PubMed  CAS  Google Scholar 

  • Peck SC (2003) Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6:334–338

    Article  PubMed  CAS  Google Scholar 

  • Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2000) Directed proteomics identifies a plant specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    Google Scholar 

  • Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf discs. Phytopathol 82:696–699

    Article  CAS  Google Scholar 

  • Perchepied L, Balague C, Rioum C, Claudel-Renard C, Riviere N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microbe Interact 23:846–860

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12:1–6

    Article  CAS  Google Scholar 

  • Pohnert G (2002) Phospholipase A2 activity triggers the woundactivated chemical defense in the diatom Thalassiosira rotula. Plant Physiol 129:103–111

    Article  PubMed  CAS  Google Scholar 

  • Popham P, Pike S, Novacky A (1995) The effect of harpin from Erwinia amylovora on the plasmalemma of suspesioncultured tobacco cells. Physiol Mol Plant Pathol 47:39–50

    Article  CAS  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schweene G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert G, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agrawal GK (2003) Rice proteomics: current status and future perspectives. Electrophoresis 24:3378–3389

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–441

    Article  PubMed  CAS  Google Scholar 

  • Ristaino JB (2002) Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestan. Microbes Infect 4:1369–1377

    Article  PubMed  Google Scholar 

  • Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signaling in plants. Plant J 22:367–376

    Article  PubMed  CAS  Google Scholar 

  • Shani BB, Suleiman ML, Mohammed US (2006) Performance evaluation of an improved animal drawn ground Metered shrouded disc (gmsd) sprayer. J Agri Engg Tech 14:4–11

    Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  PubMed  CAS  Google Scholar 

  • Somssich I, Hahlbrock K (1998) Pathogen defense in plants - a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Article  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Ann Rev Phytopathol 35:235–270

    Article  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Furuse K, Doke N, Kawakita K (1997) Identification of chitinase and osmotin-like protein as actin-binding proteins in suspension-cultured potato cells. Plant Cell Physiol 38:441–448

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate dependent and salicylate-dependent defense pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11Cimaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226:541–551

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Onuchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress. Plant Signal Behav 3:79–86

    Article  PubMed  Google Scholar 

  • Van der Luit AH, Piatti T, Van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1515

    Article  PubMed  Google Scholar 

  • Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, Hersh M, Stromberg AJ, Navarre D, Kachroo A, Kachroo P (2009) Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet 5. doi:10.1371/journal.pgen.1000545

    Google Scholar 

  • Verberne MC, Hoekstra J, Bol JF, Linthorst HJM (2003) Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J 35:27–32

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Hu W, Lin Q, Cheng X, Tong M, Zhu L, Chen R, He G (2009) Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): A proteomic approach. Proteomics 9:2798–2808

    Article  PubMed  CAS  Google Scholar 

  • Weidhase RA, Kramell HM, Lehmann J, Liebisch HW, Lerbs W, Parthier B (1987) Methyl jasmonate‐induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186

    Article  CAS  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    PubMed  CAS  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1997) Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell 9:249–259

    PubMed  CAS  Google Scholar 

  • Xing T, Ouellet T, Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7:224–230

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Young SA, Wang X, Leach JE (1996) Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv.oryzae. Plant Cell 8:1079–1090

    PubMed  CAS  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Abdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdin, M.Z., Khan, M.A., Ali, A., Alam, P., Ahmad, A., Sarwat, M. (2013). Signal Transduction and Regulatory Networks in Plant-Pathogen Interaction: A Proteomics Perspective. In: Sarwat, M., Ahmad, A., Abdin, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6372-6_4

Download citation

Publish with us

Policies and ethics