Skip to main content

Inheritance of Stress-Induced Epigenetic Changes Mediated by the ATF-2 Family of Transcription Factors

  • Chapter
  • First Online:
  • 915 Accesses

Abstract

The inheritance of stress effects has attracted much attention of late, partly because it resembles the inheritance of acquired characteristics. Accumulating evidence suggests that various stress effects may be inherited, including environmental stresses and responses to adverse nutritional conditions. Although factors such as epigenetic regulation have been implicated, the precise underlying mechanisms are obscure. The ATF-2 family of transcription factors is directly phosphorylated by stress-activated protein kinases, such as p38, in response to various stresses. In the absence of stress, they contribute to the formation of heterochromatin, which is rich in histone H3 Lys-9 trimethylation, and is a typical epigenetic marker that can be inherited. Disrupted heterochromatin, resulting from phosphorylation of ATF-2 and its related proteins, can also be inherited. This review summarizes current data on the inheritance of stress-induced epigenetic changes mediated by the ATF-2 family of transcription factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R (1996) DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry 23:263–271

    Article  PubMed  CAS  Google Scholar 

  • Benhar M, Dalyot I, Engelberg D, Levitzki A (2001) Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21:6913–6926

    Article  PubMed  CAS  Google Scholar 

  • Bhoumik A, Fichtman B, Derossi C, Breitwieser W, Kluger HM, Davis S, Subtil A, Meltzer P, Krajewski S, Jones N, Ronai Z (2008) Suppressor role of activating transcription factor 2 (ATF-­2) in skin cancer. Proc Natl Acad Sci USA 105:1674–1679

    Article  PubMed  CAS  Google Scholar 

  • Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16:622–653

    Article  PubMed  CAS  Google Scholar 

  • Brinkman BM, Telliez JB, Schievella AR, Lin LL, Goldfeld AE (1999) Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-­dependent TNF-α gene expression. J Biol Chem 274:30882–30886

    Article  PubMed  CAS  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    Article  PubMed  CAS  Google Scholar 

  • Craig CR, Fink JL, Yagi Y, Ip YT, Cagan RL (2004) A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep 5:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • De Graeve F, Bahr A, Chatton B, Kedinger C (2000) A murine ATFa-associated factor with transcriptional repressing activity. Oncogene 19:1807–1819

    Article  PubMed  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Gaire M, Chatton B, Kedinger C (1990) Isolation and characterization of two novel, closely related ATF cDNA clones from HeLa cells. Nucleic Acids Res 18:3467–3473

    Article  PubMed  CAS  Google Scholar 

  • Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S (2010) From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277:599–604

    Article  PubMed  CAS  Google Scholar 

  • Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W 3rd, Vale WW, Montminy MR (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337:749–752

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Campbell D, Dérijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393

    Article  PubMed  CAS  Google Scholar 

  • Hai TW, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  PubMed  CAS  Google Scholar 

  • Han ZS, Enslen H, Hu X, Meng X, Wu IH, Barrett T, Davis RJ, Ip YT (1998) A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol Cell Biol 18:3527–3539

    PubMed  CAS  Google Scholar 

  • Henikoff S (1990) Position-effect variegation after 60 years. Trends Genet 6:422–426

    Article  PubMed  CAS  Google Scholar 

  • Hirose N, Maekawa T, Shinagawa T, Ishii S (2009) ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells. Biochem Biophys Res Commun 385:72–77

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Noma K, Grewal SI (2004) RNAi-independent heterochromatin nucleation by the stress-­activated ATF/CREB family proteins. Science 304:1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

    Article  PubMed  CAS  Google Scholar 

  • Lamarck J-B (1809) Philosophie zoologique, ou exposition des considérations relatives à l’histoire naturelle des animaux. Dentu, Paris

    Google Scholar 

  • Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC, Green MR (1987) A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci USA 84:8355–8359

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. Cell 61:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Livingstone C, Patel G, Jones N (1997) ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14:1785–1797

    Google Scholar 

  • Maekawa T, Bernier F, Sato M, Nomura S, Singh M, Inoue Y, Tokunaga T, Imai H, Yokoyama M, Reimold A, Glimcher LH, Ishii S (1999) Mouse ATF-2 null mutants display features of severe type of meconium aspiration syndrome. J Biol Chem 274:17813–17819

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Jin W, Ishii S (2010a) The role of ATF-2 family transcription factors in adipocyte differentiation: anti-obesity effects of p38 inhibitors. Mol Cell Biol 30:613–625

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Kim S, Nakai D, Makino C, Takagi T, Ogura H, Yamada K, Chatton B, Ishii S (2010b) Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J 29:196–208

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8:2023–2028

    PubMed  CAS  Google Scholar 

  • Maekawa T, Sano Y, Shinagawa T, Sakuma T, Nomura S, Licht JD, Ishii S (2008) ATF-2 controls transcription of Maspin and GADD45α genes independently from p53 to suppress mammary tumors. Oncogene 27:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K, Miki Y, Saito-Ohara F, Inazawa J, Kohno T, Yokota J, Ishii S (2007) Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 27:1730–1744

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Maekawa T, Ishii S (1991) Identification of the functional domains of the transcriptional regulator CRE-BP1. J Biol Chem 266:18188–18193

    PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  PubMed  CAS  Google Scholar 

  • Mikula BC (1995) Environmental programming of heritable epigenetic changes in paramutant r-gene expression using temperature and light at a specific stage of early development in maize seedlings. Genetics 140:1379–1387

    PubMed  CAS  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83:6682–6686

    Article  PubMed  CAS  Google Scholar 

  • Nagadoi A, Nakazawa K, Uda H, Okuno K, Maekawa T, Ishii S, Nishimura Y (1999) The solution structure of the transactivation domain of ATF-2 comprising a zinc finger-like subdomain and a flexible subdomain. J Mol Biol 287:593–607

    Article  PubMed  CAS  Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–966

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Zu Y-L, Maekawa T, Tabata S, Akiyama T, Ishii S (1993) Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J Biol Chem 268:4259–4266

    PubMed  CAS  Google Scholar 

  • Okamura T, Shimizu H, Nagao T, Ueda R, Ishii S (2007) ATF-2 regulates fat metabolism in Drosophila. Mol Biol Cell 18:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  PubMed  CAS  Google Scholar 

  • Reimold AM, Grusby MJ, Kosaras B, Fries JW, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ, Glimcher LH (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cole JC (1993) Influence of social isolation, gender, strain, and prior novelty on plus-­maze behaviour in mice. Physiol Behav 54:729–736

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Akimaru H, Okamura T, Nagao T, Okada M, Ishii S (2005) Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH(2)-terminal kinase. Mol Biol Cell 16:2934–2946

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in TGF-β signaling. J Biol Chem 274:8949–8957

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (1998) CBP alleviates the intramolecular inhibition of ATF-2 function. J Biol Chem 273:29098–29105

    Article  PubMed  CAS  Google Scholar 

  • Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Shimoda M, Yamaguchi T, Seong KH, Ishii S (2008) Drosophila ATF-2 regulates sleep and locomotor activity in pacemaker neurons. Mol Cell Biol 28:6278–6289

    Article  PubMed  CAS  Google Scholar 

  • Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, Kamanzi O, Matsumoto K, Hisamoto N, Kim DH (2010) Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 6:e1000892

    Article  PubMed  Google Scholar 

  • van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P (1997) ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J 14:31798–31811

    Google Scholar 

  • van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298:458–469

    Article  PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12:475–487

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins ­hypothesis. Annu Rev Nutr 27:363–388

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Caron C, De Robertis C, Khochbin S, Rousseaux S (2008) Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J Reprod Dev 54:413–417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seong, KH., Maekawa, T., Ishii, S. (2013). Inheritance of Stress-Induced Epigenetic Changes Mediated by the ATF-2 Family of Transcription Factors. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_6

Download citation

Publish with us

Policies and ethics