Skip to main content

Stress-Induced Mutagenesis in Bacteria

  • Chapter
  • First Online:
Stress-Induced Mutagenesis

Abstract

Under stress, high mutation rates can be advantageous because they increase the probability of generation of the adaptive mutations. Mutation rates can be modulated by changing the proportion of constitutive mutator versus non-mutator bacteria at the population level, or by inducing stress responses, which increase mutation rates transiently in individual cells. Constitutive mutator alleles are selected because they hitchhike with the adaptive mutations they generate. There are two nonexclusive hypotheses concerning the nature of selective pressure acting on the molecular mechanisms controlling stress-induced mutagenesis: stress-induced mutagenesis could be an unavoidable by-product of mechanisms involved in survival under stress, or stress-induced mutator phenotypes could be selected for in the same way as constitutive mutator alleles; that is, via hitchhiking with the adaptive mutations they generate. However, regardless of the nature of selective pressure acting on stress-induced mutagenesis, it is very likely that the resulting increased genetic variability plays an important role in the bacterial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213

    Article  PubMed  CAS  Google Scholar 

  • Bijlsma R, Loeschcke V (eds) (1997) Environmental stress, adaptation, and evolution, vol EXS 83. Birkhäuser, Basel

    Google Scholar 

  • Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409

    Article  PubMed  CAS  Google Scholar 

  • Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, Matic I (2007) Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Bjorkholm B, Sjolund M, Falk PG, Berg OG, Engstrand L, Andersson DI (2001) Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci USA 98:14607–14612

    Article  PubMed  CAS  Google Scholar 

  • Boe L, Danielsen M, Knudsen S, Petersen JB, Maymann J, Jensen PR (2000) The frequency of mutators in populations of Escherichia coli. Mutat Res 448:47–55

    Article  PubMed  CAS  Google Scholar 

  • Brotcorne-Lannoye A, Maenhaut-Michel G (1986) Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene. Proc Natl Acad Sci USA 83:3904–3908

    Article  PubMed  CAS  Google Scholar 

  • Chao L, Cox EC (1983) Competition between high and low mutating strains of Escherichia coli. Evolution 37:125–134

    Article  Google Scholar 

  • Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature 303:633–635

    Article  PubMed  CAS  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  PubMed  CAS  Google Scholar 

  • Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  CAS  Google Scholar 

  • del Campo R, Morosini MI, de la Pedrosa EG, Fenoll A, Munoz-Almagro C, Maiz L, Baquero F, Canton R (2005) Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J Clin Microbiol 43:2207–2214

    Article  PubMed  Google Scholar 

  • Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F et al (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711–721

    Article  PubMed  CAS  Google Scholar 

  • Drake JW (1993) General antimutators are improbable. J Mol Biol 229:8–13

    Article  PubMed  CAS  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  • Eisenstark A, Calcutt MJ, Becker-Hapak M, Ivanova A (1996) Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic Biol Med 21:975–993

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Tsui HC, Winkler ME (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol 178:2388–2396

    PubMed  CAS  Google Scholar 

  • Ferenci T (2003) What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11:457–461

    Article  PubMed  CAS  Google Scholar 

  • Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  PubMed  CAS  Google Scholar 

  • Foster PL (2000) Adaptive mutation in Escherichia coli. Cold Spring Harb Symp Quant Biol 65:21–29

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:1627–1630

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  • Funchain P, Yeung A, Stewart JL, Lin R, Slupska MM, Miller JH (2000) The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154:959–970

    PubMed  CAS  Google Scholar 

  • Funchain P, Yeung A, Stewart J, Clendenin WM, Miller JH (2001) Amplification of mutator cells in a population as a result of horizontal transfer. J Bacteriol 183:3737–3741

    Article  PubMed  CAS  Google Scholar 

  • Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608

    Article  PubMed  CAS  Google Scholar 

  • Graziewicz M, Wink DA, Laval F (1996) Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17:2501–2505

    Article  PubMed  CAS  Google Scholar 

  • Guelfo JR, Rodriguez-Rojas A, Matic I, Blazquez J (2010) A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H(2)O(2) killing. PLoS Genet 6:e1000931

    Article  PubMed  Google Scholar 

  • Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, Longerich S, Szigety SK, Winkler ME, Rosenberg SM (1997) Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11:2426–2437

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2000) The general stress response in Escherichia coli. In: Storz G, Hengge-­Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 161–178

    Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  PubMed  CAS  Google Scholar 

  • Horst JP, Wu TH, Marinus MG (1999) Escherichia coli mutator genes. Trends Microbiol 7:29–36

    Article  PubMed  CAS  Google Scholar 

  • Ilves H, Horak R, Kivisaar M (2001) Involvement of sigma(S) in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J Bacteriol 183:5445–5448

    Article  PubMed  CAS  Google Scholar 

  • Imhof M, Schlotterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci USA 98:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1998) A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci USA 95:4953–4958

    Article  PubMed  CAS  Google Scholar 

  • Kannan P, Dharmalingam K (1990) Induction of the inhibitor of the RecBCD enzyme in Escherichia coli is a lexA-independent SOS response. Curr Microbiol 21:7–15

    Article  CAS  Google Scholar 

  • Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381:694–696

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H (1997) Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci USA 94:13792–13797

    Article  PubMed  CAS  Google Scholar 

  • King T, Ishihama A, Kori A, Ferenci T (2004) A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186:5614–5620

    Article  PubMed  CAS  Google Scholar 

  • Kishony R, Leibler S (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J Biol 2:14

    Article  PubMed  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    PubMed  CAS  Google Scholar 

  • Labat F, Pradillon O, Garry L, Peuchmaur M, Fantin B, Denamur E (2005) Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 44:317–321

    Article  PubMed  CAS  Google Scholar 

  • Landini P, Busby SJ (1999) Expression of the Escherichia coli ada regulon in stationary phase: evidence for rpoS-dependent negative regulation of alkA transcription. J Bacteriol 181:6836–6839

    PubMed  CAS  Google Scholar 

  • Laval F, Wink DA (1994) Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-­methyltransferase. Carcinogenesis 15:443–447

    Article  PubMed  CAS  Google Scholar 

  • Layton JC, Foster PL (2003) Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol Microbiol 50:549–561

    Article  PubMed  CAS  Google Scholar 

  • Layton JC, Foster PL (2005) Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 187:449–457

    Article  PubMed  CAS  Google Scholar 

  • Le Chat L, Fons M, Taddei F (2006) Escherichia coli mutators: selection criteria and migration effect. Microbiology 152:67–73

    Article  PubMed  Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211

    Article  PubMed  CAS  Google Scholar 

  • LeClerc JE, Payne WL, Kupchella E, Cebula TA (1998) Detection of mutator subpopulations in Salmonella typhimurium LT2 by reversion of his alleles. Mutat Res 400:89–97

    Article  PubMed  CAS  Google Scholar 

  • Lenne-Samuel N, Wagner J, Etienne H, Fuchs RP (2002) The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. EMBO Rep 3:45–49

    Article  PubMed  CAS  Google Scholar 

  • Levy MS, Balbinder E, Nagel R (1993) Effect of mutations in SOS genes on UV-induced precise excision of Tn10 in Escherichia coli. Mutat Res 293:241–247

    Article  PubMed  CAS  Google Scholar 

  • Li B, Tsui HC, LeClerc JE, Dey M, Winkler ME, Cebula TA (2003) Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli. Microbiology 149:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Edmiston SH, Pacelli Z, Mount DW (1980) Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci USA 77:3225–3229

    Article  PubMed  CAS  Google Scholar 

  • Mao EF, Lane L, Lee J, Miller JH (1997) Proliferation of mutators in a cell population. J Bacteriol 179:417–422

    PubMed  CAS  Google Scholar 

  • Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515

    Article  PubMed  CAS  Google Scholar 

  • Matic I, Taddei F, Radman M (1996) Genetic barriers among bacteria. Trends Microbiol 4:69–72

    Article  PubMed  CAS  Google Scholar 

  • Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E, Elion J (1997) Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833–1834

    Article  PubMed  CAS  Google Scholar 

  • Matic I, Taddei F, Radman M (2000) No genetic barriers between Salmonella enterica serovar typhimurium and Escherichia coli in SOS-induced mismatch repair-deficient cells. J Bacteriol 182:5922–5924

    Article  PubMed  CAS  Google Scholar 

  • McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM (2001) SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 7:571–579

    Article  PubMed  CAS  Google Scholar 

  • Mellon I, Champe GN (1996) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 93:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Mikulskis AV, Cornelis GR (1994) A new class of proteins regulating gene expression in enterobacteria. Mol Microbiol 11:77–86

    Article  PubMed  CAS  Google Scholar 

  • Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333

    Article  PubMed  CAS  Google Scholar 

  • Nilsson AI, Kugelberg E, Berg OG, Andersson DI (2004) Experimental adaptation of Salmonella typhimurium to mice. Genetics 168:1119–1130

    Article  PubMed  Google Scholar 

  • Nohmi T (2006) Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol 60:231–253

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54:855–862

    Article  PubMed  Google Scholar 

  • Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T et al (2001) The Y-family of DNA polymerases. Mol Cell 8:7–8

    Article  PubMed  CAS  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Pal C, Macia MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272:580–591

    Article  PubMed  CAS  Google Scholar 

  • Peterson CN, Mandel MJ, Silhavy TJ (2005) Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553

    Article  PubMed  CAS  Google Scholar 

  • Prunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R (2003) High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187:1709–1716

    Article  PubMed  CAS  Google Scholar 

  • Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66

    Article  PubMed  CAS  Google Scholar 

  • Richardson AR, Yu Z, Popovic T, Stojiljkovic I (2002) Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci USA 99:6103–6107

    Article  PubMed  CAS  Google Scholar 

  • Rinken R, Wackernagel W (1992) Inhibition of the RecBCD-dependent activation of Chi recombinational hot spots in SOS-induced cells of Escherichia coli. J Bacteriol 174:1172–1178

    PubMed  CAS  Google Scholar 

  • Roberts JW, Devoret R (1983) Lysogenic induction. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 123–144

    Google Scholar 

  • Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96

    Article  PubMed  CAS  Google Scholar 

  • Saumaa S, Tover A, Kasak L, Kivisaar M (2002) Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J Bacteriol 184:6957–6965

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick SG, Goodwin PA (1985) Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc Natl Acad Sci USA 82:4172–4176

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705

    Article  PubMed  CAS  Google Scholar 

  • Sutton MD, Smith BT, Godoy VG, Walker GC (2000) The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 34:479–497

    Article  PubMed  CAS  Google Scholar 

  • Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B (1997a) Role of mutator alleles in adaptive evolution. Nature 387:700–702

    Article  PubMed  CAS  Google Scholar 

  • Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I, Sekiguchi M, Radman M (1997b) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130

    Article  PubMed  CAS  Google Scholar 

  • Tanaka MM, Bergstrom CT, Levin BR (2003) The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164:843–854

    PubMed  Google Scholar 

  • Tenaillon O, Toupance B, Le Nagard H, Taddei F, Godelle B (1999) Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152:485–493

    PubMed  CAS  Google Scholar 

  • Tenaillon O, Denamur E, Matic I (2004) Evolutionary significance of stress-induced mutagenesis in bacteria. Trends Microbiol 12:264–270

    Article  PubMed  CAS  Google Scholar 

  • Tompkins JD, Nelson JL, Hazel JC, Leugers SL, Stumpf JD, Foster PL (2003) Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J Bacteriol 185:3469–3472

    Article  PubMed  CAS  Google Scholar 

  • Travis JM, Travis ER (2002) Mutator dynamics in fluctuating environments. Proceedings 269:591–597

    CAS  Google Scholar 

  • Travis ER, Travis JM (2004) Mutators in space: the dynamics of high-mutability clones in a two-­patch model. Genetics 167:513–522

    Article  PubMed  CAS  Google Scholar 

  • Tröbner W, Piechocki R (1981) Competition growth between Escherichia coli mutL and mut + in continuously growing cultures. Z Allg Mikrobiol 21:347–349

    Article  PubMed  Google Scholar 

  • Trobner W, Piechocki R (1984) Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198:177–178

    Article  PubMed  CAS  Google Scholar 

  • Tröbner W, Piechocki R (1984) Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198:177–178

    Article  PubMed  Google Scholar 

  • Tsui HC, Feng G, Winkler ME (1997) Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol 179: 7476–7487

    PubMed  CAS  Google Scholar 

  • Watson ME Jr, Burns JL, Smith AL (2004) Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology 150:2947–2958

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Wink DA, Laval J (1994) The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis 15:2125–2129

    Article  PubMed  CAS  Google Scholar 

  • Yang W (2003) Damage repair DNA polymerases Y. Curr Opin Struct Biol 13:23–30

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wolff E, Kim M, Diep A, Miller JH (2004) Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53:283–295

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Winkler ME (2000) Reduction of GC ® TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J Bacteriol 182:5025–5028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FP7-HEALTH-F3-2010-241476 and ANR-09-BLAN-0251 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Matic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matic, I. (2013). Stress-Induced Mutagenesis in Bacteria. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_1

Download citation

Publish with us

Policies and ethics