Skip to main content

Merlin and Angiomotin in Hippo-Yap Signaling

  • Chapter
  • First Online:
Book cover The Hippo Signaling Pathway and Cancer
  • 1870 Accesses

Abstract

Merlin, encoded by the NF2 tumor-suppressive gene, has been ­established through genetic studies in both Drosophila and mice as an important upstream regulator of the Hippo-Yap pathway. Recently, biochemical studies have identified Angiomotin and Angiomotin-like proteins as major interacting partners for both Merlin and Yap. The exact mechanisms of how Merlin and Angiomotin regulate Hippo signaling remain undetermined. In this chapter, we will summarize past findings and discuss controversies and remaining questions regarding the roles of Merlin and Angiomotin in Hippo signaling and tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase K, et al. Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev. 2007;21(16):2055–68.

    PubMed  CAS  Google Scholar 

  • Alfthan K, et al. Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem. 2004;279(18):18559–66.

    PubMed  CAS  Google Scholar 

  • Ammoun S, et al. Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res. 2008;68(13):5236–45.

    PubMed  CAS  Google Scholar 

  • Baia GS, Caballero OL, Orr BA, Lal A, Ho JS, Cowdrey C, et al. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res. 2012;10(7):904–13.

    PubMed  CAS  Google Scholar 

  • Baumgartner R, et al. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 2010;18(2):309–16.

    PubMed  CAS  Google Scholar 

  • Benhamouche S, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24(16):1718–30.

    PubMed  CAS  Google Scholar 

  • Bosco EE, et al. NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation. Oncogene. 2010;29(17):2540–9.

    PubMed  CAS  Google Scholar 

  • Bratt A, et al. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 2002;298(1):69–77.

    PubMed  CAS  Google Scholar 

  • Bratt A, et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem. 2005;280(41):34859–69.

    PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K. Rho and Rac take center stage. Cell. 2004;116(2):167–79.

    PubMed  CAS  Google Scholar 

  • Camargo FD, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17(23):2054–60.

    PubMed  CAS  Google Scholar 

  • Chan SW, et al. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 2011;286(9):7018–26.

    PubMed  CAS  Google Scholar 

  • Chen HI, Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A. 1995;92(17):7819–23.

    PubMed  CAS  Google Scholar 

  • Cole BK, et al. Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Mol Cell Biol. 2008;28(4):1274–84.

    PubMed  CAS  Google Scholar 

  • Curto M, et al. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol. 2007;177(5):893–903.

    PubMed  CAS  Google Scholar 

  • Deguen B, et al. Impaired interaction of naturally occurring mutant NF2 protein with actin-based cytoskeleton and membrane. Hum Mol Genet. 1998;7(2):217–26.

    PubMed  CAS  Google Scholar 

  • Diaz B, et al. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol. 1997;17(8):4509–16.

    PubMed  CAS  Google Scholar 

  • Dong J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120–33.

    PubMed  CAS  Google Scholar 

  • Ernkvist M, et al. The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood. 2009;113(1):244–53.

    PubMed  CAS  Google Scholar 

  • Espanel X, Sudol M. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem. 2001;276(17):14514–23.

    PubMed  CAS  Google Scholar 

  • Flaiz C, et al. Altered adhesive structures and their relation to RhoGTPase activation in merlin-deficient Schwannoma. Brain Pathol. 2009;19(1):27–38.

    PubMed  Google Scholar 

  • Frost JA, et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 1997;16(21):6426–38.

    PubMed  CAS  Google Scholar 

  • Garnaas MK, et al. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ Res. 2008;103(7):710–6.

    PubMed  CAS  Google Scholar 

  • Genevet A, et al. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell. 2010;18(2):300–8.

    PubMed  CAS  Google Scholar 

  • Giovannini M, et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev. 1999;13(8):978–86.

    PubMed  CAS  Google Scholar 

  • Giovannini M, et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 2000;14(13):1617–30.

    PubMed  CAS  Google Scholar 

  • Gladden AB, et al. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19(5):727–39.

    PubMed  CAS  Google Scholar 

  • Gusella JF, et al. Neurofibromatosis 2: loss of merlin’s protective spell. Curr Opin Genet Dev. 1996;6(1):87–92.

    PubMed  CAS  Google Scholar 

  • Gusella JF, et al. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim Biophys Acta. 1999;1423(2):M29–36.

    PubMed  CAS  Google Scholar 

  • Gutmann DH, Haipek CA, Hoang Lu K. Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. J Neurosci Res. 1999;58(5):706–16.

    PubMed  CAS  Google Scholar 

  • Gutmann DH, Hirbe AC, Haipek CA. Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Hum Mol Genet. 2001;10(14):1519–29.

    PubMed  CAS  Google Scholar 

  • Hamaratoglu F, et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006;8(1):27–36.

    PubMed  CAS  Google Scholar 

  • Hao Y, et al. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–509.

    PubMed  CAS  Google Scholar 

  • Heller B, et al. Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain. J Biol Chem. 2010;285(16):12308–20.

    PubMed  CAS  Google Scholar 

  • Hennigan RF, et al. Fluorescence resonance energy transfer analysis of merlin conformational changes. Mol Cell Biol. 2010;30(1):54–67.

    PubMed  CAS  Google Scholar 

  • Hennigan RF, et al. The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38(SAPK) pathway. Oncogene. 2012 [Epub ahead of print].

    Google Scholar 

  • Hirokawa Y, et al. A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer J. 2004;10(1):20–6.

    PubMed  CAS  Google Scholar 

  • Hong W, Guan KL. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012;23(7):785–93.

    PubMed  CAS  Google Scholar 

  • Houshmandi SS, et al. The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol. 2009;29(6):1472–86.

    PubMed  CAS  Google Scholar 

  • Howe AK, Juliano RL. Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol. 2000;2(9):593–600.

    PubMed  CAS  Google Scholar 

  • Huang H, et al. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development. 2007;134(5):979–88.

    PubMed  CAS  Google Scholar 

  • Huson SM, et al. Back to the future: proceedings from the 2010 NF Conference. Am J Med Genet A. 2011;155A(2):307–21.

    PubMed  Google Scholar 

  • Jin H, et al. Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature. 2006;442(7102):576–9.

    PubMed  CAS  Google Scholar 

  • Kaempchen K, et al. Upregulation of the Rac1/JNK signaling pathway in primary human schwannoma cells. Hum Mol Genet. 2003;12(11):1211–21.

    PubMed  CAS  Google Scholar 

  • King AJ, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998;396(6707):180–3.

    PubMed  CAS  Google Scholar 

  • Kissil JL, et al. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem. 2002;277(12):10394–9.

    PubMed  CAS  Google Scholar 

  • Kissil JL, et al. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell. 2003;12(4):841–9.

    PubMed  CAS  Google Scholar 

  • Komuro A, et al. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278(35):33334–41.

    PubMed  CAS  Google Scholar 

  • Lallemand D, et al. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 2003;17(9):1090–100.

    PubMed  CAS  Google Scholar 

  • Lallemand D, Saint-Amaux AL, Giovannini M. Tumor-suppression functions of merlin are independent of its role as an organizer of the actin cytoskeleton in Schwann cells. J Cell Sci. 2009a;122(Pt 22):4141–9.

    PubMed  CAS  Google Scholar 

  • Lallemand D, et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene. 2009b;28(6):854–65.

    PubMed  CAS  Google Scholar 

  • Laulajainen M, et al. Multistep phosphorylation by oncogenic kinases enhances the degradation of the NF2 tumor suppressor merlin. Neoplasia. 2011;13(7):643–52.

    PubMed  CAS  Google Scholar 

  • Lee KP, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(18):8248–53.

    PubMed  CAS  Google Scholar 

  • Li W, et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell. 2010;140(4):477–90.

    PubMed  CAS  Google Scholar 

  • Li W, et al. Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 2012a;13:204–15.

    PubMed  CAS  Google Scholar 

  • Li H, et al. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 2012b;32(1):38–47.

    PubMed  Google Scholar 

  • Liu CY, et al. PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ. J Biol Chem. 2011;286(7):5558–66.

    PubMed  CAS  Google Scholar 

  • Liu-Chittenden Y, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–5.

    PubMed  CAS  Google Scholar 

  • Lu L, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A. 2010;107(4):1437–42.

    PubMed  CAS  Google Scholar 

  • Maitra S, et al. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol. 2006;16(7):702–9.

    PubMed  CAS  Google Scholar 

  • McClatchey AI, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 1998;12(8):1121–33.

    PubMed  CAS  Google Scholar 

  • McLaughlin ME, et al. The Nf2 tumor suppressor regulates cell-cell adhesion during tissue fusion. Proc Natl Acad Sci U S A. 2007;104(9):3261–6.

    PubMed  CAS  Google Scholar 

  • Mizuno T, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene. 2012;31:5117–22.

    Google Scholar 

  • Morris ZS, McClatchey AI. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc Natl Acad Sci U S A. 2009;106(24):9767–72.

    PubMed  CAS  Google Scholar 

  • Morrison H, et al. Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res. 2007;67(2):520–7.

    PubMed  CAS  Google Scholar 

  • Oka T, Schmitt AP, Sudol M. Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene. 2012;31(1):128–34.

    PubMed  CAS  Google Scholar 

  • Okada T, Lopez-Lago M, Giancotti FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol. 2005;171(2):361–71.

    PubMed  CAS  Google Scholar 

  • Ota M, Sasaki H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development. 2008;135(24):4059–69.

    PubMed  CAS  Google Scholar 

  • Paramasivam M, et al. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell. 2011;22(19):3725–33.

    PubMed  CAS  Google Scholar 

  • Pearson MA, et al. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 2000;101(3):259–70.

    PubMed  CAS  Google Scholar 

  • Ranahan WP, et al. The adaptor protein AMOT promotes the proliferation of mammary epithelial cells via the prolonged activation of the extracellular signal-regulated kinases. Cancer Res. 2010;71(6):2203–11.

    Google Scholar 

  • Rangwala R, et al. Erbin regulates mitogen-activated protein (MAP) kinase activation and MAP kinase-dependent interactions between Merlin and adherens junction protein complexes in Schwann cells. J Biol Chem. 2005;280(12):11790–7.

    PubMed  CAS  Google Scholar 

  • Schlegelmilch K, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144(5):782–95.

    PubMed  CAS  Google Scholar 

  • Schulz A, et al. Merlin inhibits neurite outgrowth in the CNS. J Neurosci. 2010;30(30):10177–86.

    PubMed  CAS  Google Scholar 

  • Sekido Y. Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation. Pathol Int. 2011;61(6):331–44.

    PubMed  CAS  Google Scholar 

  • Sher I, et al. The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell. 2012;22(4):703–5.

    PubMed  CAS  Google Scholar 

  • Sherman L, et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene. 1997;15(20):2505–9.

    PubMed  CAS  Google Scholar 

  • Shimizu T, et al. Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem. 2002;277(12):10332–6.

    PubMed  CAS  Google Scholar 

  • Shimono A, Behringer RR. Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol. 2003;13(7):613–7.

    PubMed  CAS  Google Scholar 

  • Silvis MR, et al. Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal. 2011;4(174):ra33.

    PubMed  Google Scholar 

  • Song H, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A. 2010;107(4):1431–6.

    PubMed  CAS  Google Scholar 

  • Stokowski RP, Cox DR. Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am J Hum Genet. 2000;66(3):873–91.

    PubMed  CAS  Google Scholar 

  • Strano S, et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 2001;276(18):15164–73.

    PubMed  CAS  Google Scholar 

  • Striedinger K, et al. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia. 2008;10(11):1204–12.

    PubMed  CAS  Google Scholar 

  • Sugihara-Mizuno Y, et al. Molecular characterization of angiomotin/JEAP family proteins: ­interaction with MUPP1/Patj and their endogenous properties. Genes Cells. 2007;12(4):473–86.

    PubMed  CAS  Google Scholar 

  • Sun H, et al. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr Biol. 2000;10(5):281–4.

    PubMed  CAS  Google Scholar 

  • Tang X, et al. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nat Cell Biol. 2007;9(10):1199–207.

    PubMed  CAS  Google Scholar 

  • Troyanovsky B, et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001;152(6):1247–54.

    PubMed  CAS  Google Scholar 

  • Vadlamudi RK, et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem. 2000;275(46):36238–44.

    PubMed  CAS  Google Scholar 

  • Varelas X, et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19(6):831–44.

    PubMed  CAS  Google Scholar 

  • Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 2011a;286(6):4364–70.

    PubMed  CAS  Google Scholar 

  • Wang Y, et al. Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. J Biol Chem. 2011b;286(47):41095–104.

    PubMed  CAS  Google Scholar 

  • Wang P, et al. PP1A-mediated dephosphorylation positively regulates YAP2 activity. PLoS One. 2011c;6(9):e24288.

    PubMed  CAS  Google Scholar 

  • Wells CD, et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell. 2006;125(3):535–48.

    PubMed  CAS  Google Scholar 

  • Wong HK, et al. Merlin/NF2 regulates angiogenesis in schwannomas through a Rac1/semaphorin 3F-dependent mechanism. Neoplasia. 2012;14(2):84–94.

    PubMed  CAS  Google Scholar 

  • Wu C, et al. Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J Biol Chem. 2011;286(26):23511–20.

    PubMed  CAS  Google Scholar 

  • Xiao GH, et al. p21-activated Kinase Links Rac/Cdc42 Signaling to Merlin. J Biol Chem. 2002;277(2):883–6.

    PubMed  CAS  Google Scholar 

  • Xiao GH, et al. The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol. 2005;25(6):2384–94.

    PubMed  CAS  Google Scholar 

  • Xu MZ, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115(19):4576–85.

    PubMed  CAS  Google Scholar 

  • Yi C, et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell. 2011;19(4):527–40.

    PubMed  CAS  Google Scholar 

  • Yokoyama T, et al. YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis. 2008;29(11):2139–46.

    PubMed  CAS  Google Scholar 

  • Yu J, et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 2010;18(2):288–99.

    PubMed  CAS  Google Scholar 

  • Zender L, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006;125(7):1253–67.

    PubMed  CAS  Google Scholar 

  • Zeng Q, Hong W. The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008;13(3):188–92.

    PubMed  CAS  Google Scholar 

  • Zhang N, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19(1):27–38.

    PubMed  CAS  Google Scholar 

  • Zhao B, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.

    PubMed  CAS  Google Scholar 

  • Zhao B, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.

    PubMed  CAS  Google Scholar 

  • Zhao B, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25(1):51–63.

    PubMed  Google Scholar 

  • Zheng Y, et al. Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circ Res. 2009;105(3):260–70.

    PubMed  CAS  Google Scholar 

  • Zhou L, Hanemann CO. Merlin, a multi-suppressor from cell membrane to the nucleus. FEBS Lett. 2012;586(10):1403–8.

    PubMed  CAS  Google Scholar 

  • Zhou D, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16(5):425–38.

    PubMed  CAS  Google Scholar 

  • Zhou L, et al. Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/beta-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia. 2011a;13(12):1101–12.

    PubMed  CAS  Google Scholar 

  • Zhou D, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A. 2011b;108(49):E1312–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Yi or Joseph Kissil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yi, C., Kissil, J. (2013). Merlin and Angiomotin in Hippo-Yap Signaling. In: Oren, M., Aylon, Y. (eds) The Hippo Signaling Pathway and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6220-0_2

Download citation

Publish with us

Policies and ethics