Skip to main content

Kisspeptin and Puberty in Mammals

  • Chapter
  • First Online:
Kisspeptin Signaling in Reproductive Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 784))

Abstract

Since the discovery of the G-protein coupled receptor 54 (kisspeptin receptor) and its ligand, kisspeptin, our understanding of the neurobiological mechanisms that govern the pituitary-gonadal axis has evolved dramatically. In this chapter, we have reviewed progress regarding the relationship between kisspeptin and puberty, and have proposed a novel hypothesis for the role of kisspeptin signaling in the onset of this crucial developmental event. According to this hypothesis, although kisspeptin neurons in the arcuate nucleus (ARC) are critical for puberty, this is simply because these cells are an integral component of the hypothalamic GnRH pulse generating mechanism that drives intermittent release of the decapeptide, as an increase in GnRH is obligatory for the onset of puberty. In our model, ARC kisspeptin neurons play no “regulatory” role in controlling the timing of puberty. Rather, as a component of the neural network responsible for GnRH pulse generation, they subserve upstream regulatory mechanisms that are responsible for the timing of puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARC:

Arcuate nucleus

AVPV:

Anteroventral periventricular nucleus

E2 :

Estradiol

ERα:

Estrogen receptor alpha

GABA:

γ-Aminobutyric acid IPI Inter-pulse interval

KISS1 :

Kisspeptin gene (primates)

Kiss1 :

Kisspeptin gene (non-primates)

KISS1R:

Kisspeptin-1 receptor (primates)

Kiss1r:

Kisspeptin-1 receptor (non-primates)

KP:

Kisspeptin

MBH:

Medial basal hypothalamus

ME:

Median eminence

S-ME:

Stalk-median eminence

NPY:

Neuropeptide Y

POA:

Preoptic area

References

  1. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  PubMed  CAS  Google Scholar 

  2. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976

    Article  PubMed  Google Scholar 

  3. Semple RK, Achermann JC, Ellery J, Farooqi IS, Karet FE, Stanhope RG, O’rahilly S, Aparicio SA (2005) Novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab 90:1849–1855

    Article  PubMed  CAS  Google Scholar 

  4. Cerrato F, Shagoury J, Kralickova M, Dwyer A, Falardeau J, Ozata M, Van Vliet G, Bouloux P, Hall JE, Hayes FJ, Pitteloud N, Martin KA, Welt C, Seminara SB (2006) Coding sequence analysis of GnRHR and GPR54 in patients with congenital and adult onset forms of hypogonadotropic hypogonadism. Eur J Endocrinol 155:S3–S10

    Article  PubMed  CAS  Google Scholar 

  5. Tenenbaum-Rakover Y, Commenges-Ducos M, Iovane A, Aumas C, Admoni O, de Roux N (2007) Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. J Clin Endocrinol Metab 92:1137–1144

    Article  PubMed  CAS  Google Scholar 

  6. Nimri R, Lebenthal Y, Lazar L, Chevrier L, Phillip M, Bar M, Hernandez-Mora E, de Roux N, Gat-Yablonski G (2011) A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. J Clin Endocrinol Metab 96:E536–E545

    Article  PubMed  CAS  Google Scholar 

  7. Lanfranco F, Gromoll J, von Eckardstein S, Herding EM, Nieschlag E, Simoni M (2005) Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism. Eur J Endocrinol 153:845–852

    Article  PubMed  CAS  Google Scholar 

  8. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358:709–715

    Article  PubMed  CAS  Google Scholar 

  9. Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363

    Article  PubMed  CAS  Google Scholar 

  10. d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL, Aparicio SAJR, Colledge WH (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 104:10714–10719

    Article  PubMed  Google Scholar 

  11. Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F, Le WW, Hoffman GE, Seminara SB (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936

    Article  PubMed  CAS  Google Scholar 

  12. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    Article  PubMed  CAS  Google Scholar 

  13. Wildt L, Marshall G, Knobil E (1980) Experimental induction of puberty in the infantile female rhesus monkey. Science 207:1373–1375

    PubMed  CAS  Google Scholar 

  14. Loose MD, Terasawa E (1985) Pulsatile infusion of luteinizing hormone-releasing hormone induces precocious puberty (vaginal opening and first ovulation) in the immature female guinea pig. Biol Reprod 33:1084–1093

    Article  PubMed  CAS  Google Scholar 

  15. Plant TM (2001) Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Front Neuroendocrinol 22:107–139

    Google Scholar 

  16. Grumbach MM, Styne DM (1998) Puberty, ontogeny, neuroendocrinology, physiology, and disorders. In: Williams RH, Foster DW, Kroenenberg H, Larsen PR, Zorab R (eds) Williams textbook of endocrinology, 9th edn. W.B. Saunders, Philadelphia, PA, pp 1509–1625

    Google Scholar 

  17. Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22:111–151

    Article  PubMed  CAS  Google Scholar 

  18. Plant TM, Witchel SF (2006) Puberty in nonhuman primates and primates. In: Neill J (ed) The physiology of reproduction, vol 2, 3rd edn. Academic, San Diego, CA, pp 2177–2230

    Google Scholar 

  19. Ojeda SR, Skinner MK (2006) Puberty in the rat. In: Neill J (ed) The physiology of reproduction, vol 2, 3rd edn. Academic, Elsevier, San Diego, CA, pp 2061–2126

    Google Scholar 

  20. Terasawa E, Kurian JR (2012) Neuroendocrine mechanism of puberty. In: Fink G, Pfaff DW, Levine JE (eds) Handbook of neuroendocrinology. Academic, Elsevier, London, pp 433–484

    Chapter  Google Scholar 

  21. Plant TM (1986) Gonadal regulation of hypothalamic gonadotropin-releasing hormone release in primates. Endocr Rev 7:75–88

    Article  PubMed  CAS  Google Scholar 

  22. Plant TM (2012) A comparison of the neuroendocrine mechanisms underlying the initiation of the preovulatory LH surge in the human, Old World monkey and rodent. Front Neuroendocrinol 33:160–168

    Article  PubMed  CAS  Google Scholar 

  23. Plant TM (1985) A study of the role of the postnatal testes in determining the ontogeny of gonadotropin secretion in the male rhesus monkey (Macaca mulatta). Endocrinology 116:1341–1350

    Article  PubMed  CAS  Google Scholar 

  24. Pohl CR, de Ridder CM, Plant TM (1995) Gonadal and nongonadal mechanisms contribute to the prepubertal hiatus in gonadotropin secretion in the female rhesus monkey (Macaca mulatta). J Clin Endocrinol Metab 80:2094–2101

    Article  PubMed  CAS  Google Scholar 

  25. Conte FA, Grumbach MM, Kaplan SL (1975) A diphasic pattern of gonadotropin secretion in patients with the syndrome of gonadal dysgenesis. J Clin Endocrinol Metab 40:670–674

    Article  PubMed  CAS  Google Scholar 

  26. Ross JL, Loriaux DL, Cutler GB Jr (1983) Developmental changes in neuroendocrine regulation of gonadotropin secretion in gonadal dysgenesis. J Clin Endocrinol Metab 57:288–293

    Article  PubMed  CAS  Google Scholar 

  27. Chongthammakun S, Terasawa E (1993) Negative feedback effects of estrogen on luteinizing hormone-releasing hormone release occur in pubertal, but not prepubertal, ovariectomized female rhesus monkeys. Endocrinology 132:735–743

    Article  PubMed  CAS  Google Scholar 

  28. Foster DL, Jackson LM (2006) Puberty in the sheep. In: Neill J (ed) The physiology of reproduction, vol 2, 3rd edn. Academic, Elsevier, San Diego, CA, pp 1415–1482

    Google Scholar 

  29. Goldman BD, Gorski RA (1971) Effects of gonadal steroids on the secretion of LH and FSH in neonatal rats. Endocrinology 89:112–115

    Article  PubMed  CAS  Google Scholar 

  30. Fraser MO, Plant TM (1989) Further studies of the role of the gonads in determining the ontogeny of gonadotropin secretion in the guinea pig (Cavia porcelus). Endocrinology 125:906–911

    Article  PubMed  CAS  Google Scholar 

  31. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713–743

    Article  PubMed  CAS  Google Scholar 

  32. Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574

    Article  PubMed  CAS  Google Scholar 

  33. Takase K, Uenoyama Y, Inoue N, Matsui H, Yamada S, Shimizu M, Homma T, Tomikawa J, Kanda S, Matsumoto H, Oka Y, Tsukamura H, Maeda KI (2009) Possible role of oestrogen in pubertal increase of Kiss1/kisspeptin expression in discrete hypothalamic areas of female rats. J Neuroendocrinol 21:527–537

    Article  PubMed  CAS  Google Scholar 

  34. Takumi K, Iijima N, Ozawa H (2011) Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. J Mol Neurosci 43:138–145

    Article  PubMed  CAS  Google Scholar 

  35. Bentsen AH, Ansel L, Simonneaux V, Tena-Sempere M, Juul A, Mikkelsen JD (2010) Maturation of kisspeptinergic neurons coincides with puberty onset in male rats. Peptides 31:275–283

    Article  PubMed  CAS  Google Scholar 

  36. Clarkson J, Herbison AE (2011) Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone ­neurones. J Neuroendocrinol 23:293–301

    Article  PubMed  CAS  Google Scholar 

  37. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356

    Article  PubMed  CAS  Google Scholar 

  38. Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB (2010) Reproductive hormone-­dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One 5:e11911

    Article  PubMed  Google Scholar 

  39. Kauffman AS, Navarro VM, Kim J, Clifton DK, Steiner RA (2009) Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty. Am J Physiol Endocrinol Metab 297:E1212–E1221

    Article  PubMed  CAS  Google Scholar 

  40. Poling MC, Kauffman AS (2012) Sexually dimorphic testosterone secretion in prenatal and neonatal mice is independent of kisspeptin-Kiss1r and GnRH signaling. Endocrinology 153:782–793

    Article  PubMed  CAS  Google Scholar 

  41. Jean-Faucher C, el Watik N, Berger M, De Turckheim M, Veyssiere G, Jean C (1985) Regulation of gonadotrophin secretion in male mice from birth to adulthood. Response to LHR injection, castration, and testosterone replacement therapy. Acta Endocrinol (Copenh) 110:193–199

    CAS  Google Scholar 

  42. Ojeda SR, Ramirez VD (1973–1974) Short-term steroid treatment on plasma LH and FSH in castrated rats from birth to puberty. Neuroendocrinology 13:100–114

    Google Scholar 

  43. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 102:2129–2134

    Article  PubMed  CAS  Google Scholar 

  44. Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 147:5817–5825

    Article  PubMed  CAS  Google Scholar 

  45. Mayer C, Boehm U (2011) Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 14:704–710

    Article  PubMed  CAS  Google Scholar 

  46. Yeo SH, Herbison AE (2011) Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 152:2387–2399

    Article  PubMed  CAS  Google Scholar 

  47. Nestor CC, Briscoe AM, Davis SM, Valent M, Goodman RL, Hileman SM (2012) Evidence of a role for kisspeptin and neurokinin B in puberty of female sheep. Endocrinology 153:2756–2765

    Article  PubMed  CAS  Google Scholar 

  48. Dwarki K, Ramaswamy S, Gibbs R and Plant TM. The arrest of GnRH pulsatility during infancy that guarantees the quiescence of the primate gonad during juvenile development is correlated with a reduction in immunopositive kisspeptin neurons in the arcuate nucleus of the male rhesus monkey (Macaca mulatta). In: 93rd Annual Meeting of The Endocrine Society, Boston, June 2011, Abstract #P2-262

    Google Scholar 

  49. Clarkson J, Boon WC, Simpson ER, Herbison AE (2009) Postnatal development of an estradiol-­kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150:3214–3220

    Article  PubMed  CAS  Google Scholar 

  50. Mayer C, Acosta-Martinez M, Dubois SL, Wolfe A, Radovick S, Boehm U, Levine JE (2010) Timing and completion of puberty in female mice depend on estrogen receptor alpha-­signaling in kisspeptin neurons. Proc Natl Acad Sci USA 107:22693–22698

    Article  PubMed  CAS  Google Scholar 

  51. Rometo AM, Krajewski SJ, Voytko ML, Rance NE (2007) Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab 92:2744–2750

    Article  PubMed  CAS  Google Scholar 

  52. Smith JT, Shahab M, Pereira A, Pau KY, Clarke IJ (2010) Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod 83:568–577

    Article  PubMed  CAS  Google Scholar 

  53. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I (2010) The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 31:1984–1998

    Article  PubMed  CAS  Google Scholar 

  54. Parhar IS, Ogawa S, Sakuma Y (2004) Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology 145:3613–3618

    Article  PubMed  CAS  Google Scholar 

  55. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102:1761–1766

    Article  PubMed  CAS  Google Scholar 

  56. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80:264–272

    Article  PubMed  CAS  Google Scholar 

  57. Herbison AE, de Tassigny X, Doran J, Colledge WH (2010) Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151:312–321

    Article  PubMed  CAS  Google Scholar 

  58. Guerriero KA, Keen KL, Millar RP, Terasawa E (2012) Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female Rhesus monkeys (Macaca mulatta): Implication for the mechanism of puberty. Endocrinology 153:825–836

    Article  PubMed  CAS  Google Scholar 

  59. Plant TM, Ramaswamy S, DiPietro MJ (2006) Repetitive activation of hypothalamic G protein coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 147:1007–1013

    Article  PubMed  CAS  Google Scholar 

  60. Constantin S, Caligioni CS, Stojilkovic S, Wray S (2009) Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 150:1400–1412

    Article  PubMed  CAS  Google Scholar 

  61. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617

    Article  PubMed  CAS  Google Scholar 

  62. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffman SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636

    Article  PubMed  CAS  Google Scholar 

  63. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Miller RP (2009) Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 29:3920–3929

    Article  PubMed  CAS  Google Scholar 

  64. Frost SI, Keen KL, Levine JE, Terasawa E (2008) Microdialysis methods for in vivo neuropeptide measurement in the stalk-median eminence in the rhesus monkey. J Neurosci Methods 168:26–34

    Article  PubMed  CAS  Google Scholar 

  65. Keen KL, Wegner FH, Bloom SR, Ghatei MA, Terasawa E (2008) An increase in kisspeptin-­54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo. Endocrinology 149:4151–4157

    Article  PubMed  CAS  Google Scholar 

  66. Guerriero KA, Keen KL, Terasawa E (2012) Developmental increase in kisspeptin-54 in vivo is independent of the pubertal increase in estradiol in female rhesus monkeys (Macaca mulatta). Endocrinology 153:1887–1897

    Article  PubMed  CAS  Google Scholar 

  67. Watanabe G, Terasawa E (1989) In vivo release of luteinizing hormone releasing hormone (LHRH) increases with puberty in the female rhesus monkey. Endocrinology 125:92–99

    Article  PubMed  CAS  Google Scholar 

  68. Chongthammakun S, Claypool LE, Terasawa E (1993) Ovariectomy increases in vivo LHRH release in pubertal, but not prepubertal, female rhesus monkeys. J Neuroendocrinol 5:41–50

    Article  PubMed  CAS  Google Scholar 

  69. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148:5752–5760

    Article  PubMed  CAS  Google Scholar 

  70. Wakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Navarro VM, Clifton DK, Mori Y, Tsukamura H, Maeda K, Steiner RA, Okamura H (2010) Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30:3124–3132

    Article  PubMed  CAS  Google Scholar 

  71. Kawakami M, Uemura T, Hayashi R (1982) Electrophysiological correlates of pulsatile gonadotropin release in rats. Neuroendocrinology 35:63–67

    Article  PubMed  CAS  Google Scholar 

  72. Wilson RC, Kesner JS, Kaufman JM, Uemura T, Akema T, Knobil E (1984) Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 39:256–260

    Article  PubMed  CAS  Google Scholar 

  73. Ohkura S, Takase K, Matsuyama S, Mogi K, Ichimaru T, Wakabayashi Y, Uenoyama Y, Mori Y, Steiner RA, Tsukamura H, Maeda KI, Okamura H (2009) Gonadotrophin-releasing hormone pulse generator activity in the hypothalamus of the goat. J Neuroendocrinol 21:813–821

    Article  PubMed  CAS  Google Scholar 

  74. Navarro VM, Gottsch ML, Wu M, Garcia-Galiano D, Hobbs SJ, Bosch MA, Pinilla L, Clifton DK, Dearth A, Ronnekleiv OK, Braun RE, Palmiter RD, Tena-Sempere M, Alreja M, Steiner RA (2011) Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 152:4265–4275

    Article  PubMed  CAS  Google Scholar 

  75. Ramaswamy S, Seminara SB, Plant TM (2011) Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology 94:237–245

    Article  PubMed  CAS  Google Scholar 

  76. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM (2008) Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 149:4387–4395

    Article  PubMed  CAS  Google Scholar 

  77. Li XF, Kinsey-Jones JS, Cheng Y, Knox AM, Lin Y, Petrou NA, Roseweir A, Lightman SL, Milligan SR, Millar RP, O’Byrne KT (2009) Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS One 4:e8334

    Article  PubMed  Google Scholar 

  78. Blake CA, Sawyer CH (1974) Effects of hypothalamic deafferentation on the pulsatile rhythm in plasma concentrations of luteinizing hormone in ovariectomized rats. Endocrinology 94:730–736

    Article  PubMed  CAS  Google Scholar 

  79. Krey LC, Hess DL, Butler WR, Espinosa-Campos J, Lu KH, Piva F, Plant TM, Knobil E (1981) Medial basal hypothalamic disconnection and the onset of puberty in the female rhesus monkey. Endocrinology 108:1944–1948

    Article  PubMed  CAS  Google Scholar 

  80. Plant TM, Moossy J, Hess DL, Nakai Y, McCormack JT, Knobil E (1979) Further studies on the effects of lesions in the rostral hypothalamus on gonadotropin secretion in the female rhesus monkey (Macaca mulatta). Endocrinology 105:465–473

    Article  PubMed  CAS  Google Scholar 

  81. Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE (2012) Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 153:2800–2812

    Article  PubMed  CAS  Google Scholar 

  82. Clarkson J, Han SK, Liu X, Lee K, Herbison AE (2010) Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Mol Cell Endocrinol 324:45–50

    Article  PubMed  CAS  Google Scholar 

  83. Chan YM, Broder-Fingert S, Wong KM, Seminara SB (2009) Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. J Neuroendocrinol 21:1015–1023

    Article  PubMed  CAS  Google Scholar 

  84. Mitsushima D, Hei DL, Terasawa E (1994) GABA is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91:395–399

    Article  PubMed  CAS  Google Scholar 

  85. Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E (1999) Effects of pulsatile infusion of the GABAA receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 140:5257–5266

    Article  PubMed  CAS  Google Scholar 

  86. El Majdoubi M, Sahu A, Ramaswamy S, Plant TM (2000) Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci USA 97:6179–6184

    Article  PubMed  CAS  Google Scholar 

  87. Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C (1997) Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non GABAergic subpopulations. Brain Res 756:283–286

    Article  PubMed  CAS  Google Scholar 

  88. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71:142–154

    Article  PubMed  CAS  Google Scholar 

  89. Kurian JR, Keen KL, Guerriero KA, Terasawa E (2012) Tonic control of kisspeptin release in prepubertal monkeys: implications to the mechanism of puberty onset. Endocrinology 153:3331–3336

    Article  PubMed  CAS  Google Scholar 

  90. Plant TM, Fraser MO, Medhamurthy R, Gay VL (1989) Somatogenic control of GnRH neuronal synchronization during development in primates: a speculation. In: Plant TM, van Rees GP, Schoemaker J, Delamarre-van de Waal HA (eds) Control of the onset of puberty III. Excerpta Medica, Amsterdam, pp 111–121

    Google Scholar 

  91. Wilson ME, Gordon TP, Rudman CG, Tanner JM (1989) Effects of growth hormone on the tempo of sexual maturation in female rhesus monkeys. J Clin Endocrinol Metab J68:29–38

    Article  Google Scholar 

  92. Mann DR, Plant TM (2010) The role and potential sites of action of thyroid hormone in timing the onset of puberty in male primates. Brain Res 1364:175–185

    Article  PubMed  CAS  Google Scholar 

  93. Terasawa E, Kurian JR, Keen KL, Shiel NA, Colman RJ, Capuano SV (2012) Body weight impact on puberty: effects of high-calorie diet on puberty onset in female rhesus monkeys. Endocrinology 153:1696–1705

    Article  PubMed  CAS  Google Scholar 

  94. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26:6687–6694

    Article  PubMed  CAS  Google Scholar 

  95. Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J Jr, Atkin S, Bookout AL, Rovinsky S, Frazão R, Lee CE, Gautron L, Zigman JM, Elias CF (2011) Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173:37–56

    Article  PubMed  CAS  Google Scholar 

  96. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401:225–230

    Article  PubMed  CAS  Google Scholar 

  97. Foster DL, Ryan KD (1979) Endocrine mechanisms governing transition into adulthood: a marked decrease in inhibitory feedback action of estradiol on tonic secretion of luteinizing hormone in the lamb during puberty. Endocrinology 105:896–904

    Article  PubMed  CAS  Google Scholar 

  98. Dohrn M, Hohlweg W (1931) Hormonale beziehungen zwischen hypohysenvorderlappen und keimdrusen. In: Proceedings of the second International Congress on Sex Research. Oliver and Boyd, Edinburgh, pp 436–442

    Google Scholar 

  99. Steele RE, Weisz J (1974) Changes in sensitivity of estradiol-LH feedback system with puberty in the female rat. Endocrinology 95:513–520

    Article  PubMed  CAS  Google Scholar 

  100. Andrews WW, Advis JP, Ojeda SR (1981) The maturation of estradiol-negative feedback in female rats: evidence that the resetting of the hypothalamic “gonadostat” does not precede the first preovulatory surge of gonadotropins. Endocrinology 109:2022–2031

    Article  PubMed  CAS  Google Scholar 

  101. Kulin HE, Grumbach MM, Kaplan SL (1969) Changing sensitivity of the pubertal gonadal hypothalamic feedback mechanism in man. Science 166:1012–1013

    Article  PubMed  CAS  Google Scholar 

  102. Rapisarda JJ, Bergman KS, Steiner RA, Foster DL (1983) Response to estradiol inhibition of tonic luteinizing hormone secretion decreases during the final stage of puberty in the rhesus monkey. Endocrinology 112:1172–1179

    Article  PubMed  CAS  Google Scholar 

  103. Wilson ME (1995) IGF-1 administration advances the decrease in hypersensitivity to oestradiol negative feedback inhibition of serum LH in adolescent female monkeys. J Endocrinol 145:121–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants R01 HD15433 and R01 HD11355 for ET, R01 HD 013254 and U54 HD 08160 for TMP, T32 HD041921 for KAG, and P51 0D011106 for WNPRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ei Terasawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Terasawa, E., Guerriero, K.A., Plant, T.M. (2013). Kisspeptin and Puberty in Mammals. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_12

Download citation

Publish with us

Policies and ethics