Skip to main content

Androgen Regulation of the Cell Cycle in Prostate Cancer

  • Chapter
  • First Online:
Androgen-Responsive Genes in Prostate Cancer
  • 971 Accesses

Abstract

Androgens control both growth and differentiation of the normal prostate gland and are the major factors on which prostate cancer cells depend for growth and survival. However, the mechanisms by which androgens act upon the cell cycle machinery to regulate both growth and differentiation are not fully understood. Research over the past decades reveals that expression of several key cell cycle regulators such as SKP2, p27KIP1, E2F1, and EZH2 is regulated by androgens in a biphasic manner, that is, stimulated by low dose of androgens but repressed by higher doses of androgens. Because age is one of the key risk factors for prostate cancer, it is possible that with the decline in the levels of serum testosterone during aging, androgenic regulation of cell cycle genes may shift from the pro-differentiation to pro-proliferative mode. It is also likely that residual levels of androgens produced via intracrine mechanism in castration-resistant prostate cancer may be sufficient to activate androgen-mediated pro-proliferative gene program, but insufficient to initiate anti-proliferative program, thereby favoring castration-resistant progression. Finally, the possibility that the androgen-regulated anti-proliferative gene program may be outlawed by frequently deregulated oncogenic pathways in human prostate cancers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang H, Tindall DJ (2002) The role of the androgen receptor in prostate cancer. Crit Rev Eukaryot Gene Expr 12:193–207

    Article  PubMed  CAS  Google Scholar 

  2. Mahendroo MS, Russell DW (1999) Male and female isoenzymes of steroid 5alpha-reductase. Rev Reprod 4:179–183

    Article  PubMed  CAS  Google Scholar 

  3. Wilson JD (1996) Role of dihydrotestosterone in androgen action. Prostate Suppl 6:88–92

    Article  PubMed  CAS  Google Scholar 

  4. Chen Y, Robles AI, Martinez LA, Liu F, Gimenez-Conti IB, Conti CJ (1996) Expression of G1 cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in androgen-induced prostate proliferation in castrated rats. Cell Growth Differ 7:1571–1578

    PubMed  CAS  Google Scholar 

  5. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    PubMed  CAS  Google Scholar 

  6. Jiang J, Pan Y, Regan KM, Wu C, Zhang X, Tindall DJ, Huang H (2012) Androgens repress expression of the F-box protein Skp2 via p107 dependent and independent mechanisms in LNCaP prostate cancer cells. Prostate 72:225–232

    Article  PubMed  CAS  Google Scholar 

  7. Kim IY, Kim JH, Zelner DJ, Ahn HJ, Sensibar JA, Lee C (1996) Transforming growth factor-beta1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP. Endocrinology 137:991–999

    Article  PubMed  CAS  Google Scholar 

  8. Lee C, Sutkowski DM, Sensibar JA, Zelner D, Kim I, Amsel I, Shaw N, Prins GS, Kozlowski JM (1995) Regulation of proliferation and production of prostate-specific antigen in androgen-sensitive prostatic cancer cells, LNCaP, by dihydrotestosterone. Endocrinology 136:796–803

    Article  PubMed  CAS  Google Scholar 

  9. Brawer MK (1995) Prostate cancer. J Urol 153:115–116

    Article  PubMed  CAS  Google Scholar 

  10. Pienta KJ, Esper PS (1993) Risk factors for prostate cancer. Ann Intern Med 118:793–803

    PubMed  CAS  Google Scholar 

  11. Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50:3748–3753

    PubMed  CAS  Google Scholar 

  12. Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711

    Article  PubMed  CAS  Google Scholar 

  13. Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001

    PubMed  Google Scholar 

  14. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  15. Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915–925

    Article  PubMed  CAS  Google Scholar 

  16. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    Article  PubMed  CAS  Google Scholar 

  17. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102:1649–1654

    Article  PubMed  CAS  Google Scholar 

  18. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI (2003) Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA 100:10231–10236

    Article  PubMed  CAS  Google Scholar 

  19. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    Article  PubMed  CAS  Google Scholar 

  20. Tedesco D, Lukas J, Reed SI (2002) The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 16:2946–2957

    Article  PubMed  CAS  Google Scholar 

  21. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, Cohen S, Ciechanover A (2003) Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol 170:241–245

    Article  PubMed  CAS  Google Scholar 

  22. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW (2002) Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8:3419–3426

    PubMed  CAS  Google Scholar 

  23. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  PubMed  CAS  Google Scholar 

  24. Shim EH, Johnson L, Noh HL, Kim YJ, Sun H, Zeiss C, Zhang H (2003) Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res 63:1583–1588

    PubMed  CAS  Google Scholar 

  25. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI et al (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464:374–379

    Article  PubMed  CAS  Google Scholar 

  26. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825

    Article  PubMed  CAS  Google Scholar 

  27. Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F, Adams JY, Bhattacharya N, Cirenei N, Loda M (2001) Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol 15:765–782

    Article  PubMed  CAS  Google Scholar 

  28. Lu S, Liu M, Epner DE, Tsai SY, Tsai MJ (1999) Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13:376–384

    Article  PubMed  CAS  Google Scholar 

  29. Huang H, Zegarra-Moro OL, Benson D, Tindall DJ (2004) Androgens repress Bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells. Oncogene 23:2161–2176

    Article  PubMed  CAS  Google Scholar 

  30. Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, Scher HI (1998) Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 90:1284–1291

    Article  PubMed  CAS  Google Scholar 

  31. Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G (1998) Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 90:916–920

    Article  PubMed  CAS  Google Scholar 

  32. Guo Y, Sklar GN, Borkowski A, Kyprianou N (1997) Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clinical Cancer Res 3:2269–2274

    CAS  Google Scholar 

  33. Tsihlias J, Zhang W, Bhattacharya N, Flanagan M, Klotz L, Slingerland J (2000) Involvement of p27Kip1 in G1 arrest by high dose 5 alpha-dihydrotestosterone in LNCaP human prostate cancer cells. Oncogene 19:670–679

    Article  PubMed  CAS  Google Scholar 

  34. Lu L, Schulz H, Wolf DA (2002) The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol 3:22

    Article  PubMed  CAS  Google Scholar 

  35. Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW, Scher HI (1999) Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 91:1869–1876

    Article  PubMed  CAS  Google Scholar 

  36. Hofman K, Swinnen JV, Verhoeven G, Heyns W (2001) E2F activity is biphasically regulated by androgens in LNCaP cells. Biochem Biophys Res Commun 283:97–101

    Article  PubMed  CAS  Google Scholar 

  37. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

  38. Bohrer LR, Chen S, Hallstrom TC, Huang H (2010) Androgens suppress EZH2 expression via retinoblastoma (RB) and p130-dependent pathways: a potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology 151:5136–5145

    Article  PubMed  CAS  Google Scholar 

  39. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9:108

    Article  PubMed  Google Scholar 

  40. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  PubMed  CAS  Google Scholar 

  41. Perry JE, Tindall DJ (1996) Androgens regulate the expression of proliferating cell nuclear antigen posttranscriptionally in the human prostate cancer cell line, LNCaP. Cancer Res 56:1539–1544

    PubMed  CAS  Google Scholar 

  42. Reddy SK, Rape M, Margansky WA, Kirschner MW (2007) Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446:921–925

    Article  PubMed  CAS  Google Scholar 

  43. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  PubMed  CAS  Google Scholar 

  44. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  PubMed  CAS  Google Scholar 

  45. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027

    Article  PubMed  CAS  Google Scholar 

  46. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3:245–252

    Article  PubMed  CAS  Google Scholar 

  47. Huang H, Cheville JC, Pan Y, Roche PC, Schmidt LJ, Tindall DJ (2001) PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem 276:38830–38836

    Article  PubMed  CAS  Google Scholar 

  48. Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ (2003) p300 in prostate cancer proliferation and progression. Cancer Res 63:7638–7640

    PubMed  CAS  Google Scholar 

  49. Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10:1644–1655

    Article  PubMed  CAS  Google Scholar 

  50. Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LM, Hobisch A, Culig Z, Tindall DJ (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67:3422–3430

    Article  PubMed  CAS  Google Scholar 

  51. Knudsen KE, Arden KC, Cavenee WK (1998) Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273:20213–20222

    Article  PubMed  CAS  Google Scholar 

  52. Simanainen U, Allan CM, Lim P, McPherson S, Jimenez M, Zajac JD, Davey RA, Handelsman DJ (2007) Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 148:2264–2272

    Article  PubMed  CAS  Google Scholar 

  53. Wu CT, Altuwaijri S, Ricke WA, Huang SP, Yeh S, Zhang C, Niu Y, Tsai MY, Chang C (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci USA 104:12679–12684

    Article  PubMed  CAS  Google Scholar 

  54. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, Timms B (2004) Human prostate cancer risk factors. Cancer 101:2371–2490

    Article  PubMed  CAS  Google Scholar 

  55. Hsing AW, Tsao L, Devesa SS (2000) International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85:60–67

    Article  PubMed  CAS  Google Scholar 

  56. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 86:724–731

    Article  PubMed  CAS  Google Scholar 

  57. Deocampo ND, Huang H, Tindall DJ (2003) The role of PTEN in the progression and survival of prostate cancer. Minerva Endocrinol 28:145–153

    PubMed  CAS  Google Scholar 

  58. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95:15587–15591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (CA134514 and CA130908) and the Department of Defense (W81XWH-09-1-622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, H. (2013). Androgen Regulation of the Cell Cycle in Prostate Cancer. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_14

Download citation

Publish with us

Policies and ethics