Skip to main content

Current Approaches to Epigenetic Therapy for the Treatment of Mantle Cell Lymphoma

  • Chapter
  • First Online:
Impact of Genetic Targets on Cancer Therapy

Abstract

Epigenetics is the study of heritable changes in phenotype or gene expression caused by mechanisms other than changes in the underlying DNA sequence. Such changes can include DNA methylation or histone modifications which both serve to silence gene expression. This review describes a new development in pharmacology, epigenetic therapy, which attempts to correct these epigenetic changes for the treatment of mantle cell lymphoma (MCL) and other B cell malignancies for which no consensus on standard therapy exists. One class of drugs utilized are the histone deacetylase inhibitors, (HDACi) which result in the accumulation of acetylated histones. Hyperacetylation of histones and nonhistone proteins are postulated to mediate the anticancer effects of these drugs. Another class of epigenetic agents are hypomethylating agents, that can cause both DNA and histone hypomethylation. Epigenetic drugs may be useful in the treatment of cancer where hypermethylation of tumor suppressor genes is known to lead to silencing of these genes. The purine analog cladribine has been shown to have hypomethylating properties and has activity as a single agent or in combination with other therapies for mantle cell lymphoma. Epigenetic therapy with the DNA hypomethylating agent 5-aza-2-deoxycytidine can also cause restoration of cell surface expression of the CD20 protein and increase rituximab sensitivity in vitro. Combinations of epigenetic agents may act synergistically to further potentiate the efficacy of monoclonal antibodies like rituximab and ofatumumab and improve the treatment outcome in MCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  PubMed  CAS  Google Scholar 

  2. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–93.

    Article  PubMed  CAS  Google Scholar 

  3. Esteller M. Molecular origins of cancer: epigenetics in cancer. New Engl J Med. 2008;358(11):1148–59.

    Article  PubMed  CAS  Google Scholar 

  4. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  5. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, form a complex at replication foci. Nat Genet. 2000;25(3):269–77.

    Article  PubMed  CAS  Google Scholar 

  6. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25(3):338–42.

    Article  PubMed  CAS  Google Scholar 

  7. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  8. Lichtenstein M, Keini G, Cedar H, Bergman Y. B-cell-specific demethylation—a novel role for the intronic kappa-chain enhancer sequence. Cell. 1994;76(5):913–23.

    Article  PubMed  CAS  Google Scholar 

  9. Madisen L, Krumm A, Hebbes TR, Groudine M. The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol. 1998;18(11):6281–92.

    PubMed  CAS  Google Scholar 

  10. Herman JG, Baylin SB. Mechanisms of disease: gene silencing in cancer in association with promoter hypermethylation. New Engl J Med. 2003;349(21):2042–54.

    Article  PubMed  CAS  Google Scholar 

  11. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113(20):4885–93.

    Article  PubMed  CAS  Google Scholar 

  12. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. New Engl J Med. 2004;351(21):2159–69.

    Article  PubMed  CAS  Google Scholar 

  13. Wei Y, Agrawal N, Patel J, Edinger A, Osei E, Thut D, et al. Diminished expression of CD19 in B-cell lymphomas. Cytom Part B-Clin Cy. 2005;63B(1):28–35.

    Article  Google Scholar 

  14. Martin P, Chadburn A, Christos P, Weil K, Furman RR, Ruan J, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009;27(8):1209–13.

    Article  PubMed  Google Scholar 

  15. Yoong Y, Kurtin PJ, Allmer C, Geyer S, Habermann TM, Nagorney M, et al. Efficacy of splenectomy for patients with mantle cell non-Hodgkin’s lymphoma. Leukemia Lymphoma. 2001;42(6):1235–41.

    PubMed  CAS  Google Scholar 

  16. Determann O, Hoster E, Ott G, Bernd HW, Loddenkemper C, Hansmann ML, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade lymphoma Study Group. Blood. 2008;111(4):2385–7.

    Article  PubMed  CAS  Google Scholar 

  17. Howard OM, Gribben JG, Neuberg DS, Grossbard M, Poor C, Janicek MJ, et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol. 2002;20(5):1288–94.

    Article  PubMed  CAS  Google Scholar 

  18. Lenz G, Dreyling M, Hoster E, Wormann B, Duhrsen U, Metzner B, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol. 2005;23(9):1984–92.

    Article  PubMed  CAS  Google Scholar 

  19. Romaguera JE, Fayad L, Rodriguez MA, Broglio KR, Hagemeister FB, Pro B, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol. 2005;23(28):7013–23.

    Article  PubMed  CAS  Google Scholar 

  20. Epner EM, Unger J, Miller T, Rimza L, Spier C, Leblanc M, et al. A multi center trial of hyperCVAD plus rituxan in patients with newly diagnosed mantle cell lymphoma. Blood. 2007;110(11):121a.

    Google Scholar 

  21. Goy A, Kahl B. Mantle cell lymphoma: the promise of new treatment options. Crit Rev Oncol Hemat. 2011;80(1):69–86.

    Article  Google Scholar 

  22. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  PubMed  CAS  Google Scholar 

  23. Paulson K, Kumar R, Ahsanuddin A, Seftel MD. Azacytidine as a novel agent in the treatment of acute lymphoblastic leukemia. Leukemia Lymphoma. 2011;52(1):134–6.

    Article  PubMed  CAS  Google Scholar 

  24. Blum KA, Liu ZF, Lucas DM, Chen P, Xie ZL, Baiocchi R, et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and Non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Brit J Haematol. 2010;150(2):189–95.

    CAS  Google Scholar 

  25. Spurgeon S, Yu M, Phillips JD, Epner EM. Cladribine: not just another purine analogue? Expert Opin Inv Drug. 2009;18(8):1169–81.

    Article  CAS  Google Scholar 

  26. Rummel MJ, Chow KU, Karakas T, Jaager E, Mezger J, Von Grunhagen U, et al. Reduced-dose cladribine (2-CdA) plus mitoxantrone is effective in the treatment of mantle-cell and low-grade Non-Hodgkin’s lymphoma. Eur J Cancer. 2002;38(13):1739–46.

    Article  PubMed  CAS  Google Scholar 

  27. Robak T, Smolewski P, Cebula B, Szmigielska-Kaplon A, Chojnowski K, Blonski JZ. Rituximab combined with cladribine or with cladribine and cyclophosphamide in heavily pretreated patients with indolent lymphoproliferative disorders and mantle cell lymphoma. Cancer. 2006;107(7):1542–50.

    Article  PubMed  CAS  Google Scholar 

  28. Inwards DJ, Fishkin PAS, Hillman DW, Brown DW, Ansell SM, Kurtin PJ, et al. Long-term results of the treatment of patients with mantle cell lymphoma with cladribine (2-CDA) alone (95-80-53) or 2-CDA and rituximab (N0189) in the North Central Cancer Treatment Group. Cancer. 2008;113(1):108–16.

    Article  PubMed  CAS  Google Scholar 

  29. Spurgeon SE, Pindyck T, Okada C, Chen YY, Chen ZQ, Mater E, et al. Cladribine plus rituximab is an effective therapy for newly diagnosed mantle cell lymphoma. Leukemia Lymphoma. 2011;52(8):1488–94.

    Article  PubMed  CAS  Google Scholar 

  30. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.

    Article  PubMed  CAS  Google Scholar 

  31. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40(6):741–50.

    Article  PubMed  CAS  Google Scholar 

  32. Duvic M, Talpur R, Ni X, Zhang CL, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma, (CTCL). Blood. 2007;109(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kirschbaum M, Frankel P, Popplewell L, Zain J, Delioukina M, Pullarkat V, et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29(9):1198–203.

    Article  PubMed  CAS  Google Scholar 

  34. A phase II study of the Histone Deacetylase (HDAC) inhibitor LBH589 (Panobinostat) in patients with relapsed or refractory Non-Hodgkin lymphoma (NCT01261247). www.clinicaltrials.gov

  35. A phase I/II study of the Histone Deacetylase (HDAC) Inhibitor LBH589 (Panobinostat) in combination with mTOR Inhibitor RAD001 (Everolimus) in patients with relapsed multiple myeloma or lymphoma (NCT00918333). www.clinicaltrials.gov

  36. A Phase II study of depsipeptide, a histone deacetylase inhibitor, in relapsed or refractory mantle cell or diffuse large cell non-Hodgkin’s lymphoma (NCT00077194). www.clinicaltrials.gov.

  37. Spurgeon S, Chen AI, Okada C, Parekh S, Leshchenko VV, Palmbach G, et al. A Phase I/II Study of vorinostat (SAHA), cladribine (2-CdA), and rituximab shows significant activity in previously untreated mantle cell lymphoma. Blood. 2011;118(21):203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot M. Epner M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghai, V., Sharma, K., Abbi, K.K.S., Shimko, S., Epner, E.M. (2013). Current Approaches to Epigenetic Therapy for the Treatment of Mantle Cell Lymphoma. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_11

Download citation

Publish with us

Policies and ethics