Skip to main content

Antioxidants in the Treatment of Osteoarthritis and Bone Mineral Loss

  • Chapter
  • First Online:

Abstract

The concept that inflammatory diseases of bones and joints can be postponed or even prevented naturally by consuming certain foods or food-derived substances is currently eliciting considerable interest from researchers, clinicians and patients. Oxidative stress results in the production of reactive oxygen species (ROS), which play important roles in the development of many diseases including those relating to bones and joints. Metabolic reactions in osteoblasts, osteoclasts, chondrocytes and synoviocytes produce free radicals, ROS and their derivatives. These dangerous chemicals can accumulate in bones and synovial joints, and in combination with inflammatory mediators they can cause extensive structural damage, inflammation and cell death. Antioxidants are naturally occurring reducing agents capable of inhibiting ROS formation, scavenging free radicals and removing ROS derivatives. Antioxidant vitamins have major roles in modulating oxidative stress, regulating immune responses and contributing to cell differentiation. Vitamin C (ascorbic acid), vitamin E, thiols (glutathione) and plant polyphenols have the capacity to neutralize ROS in joints and decrease the oxidative stress associated with the progression of arthritis. This chapter focuses on antioxidants and their potential for the treatment of diseases of bones and joints, particularly focusing on osteoarthritis (OA) and bone mineral loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.un.org/

  2. 2.

    http://www.who.int/en/

  3. 3.

    http://www.arthritis.org/

  4. 4.

    http://www.niams.nih.gov/

  5. 5.

    http://www.cdc.gov/

  6. 6.

    http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/overview.asp

  7. 7.

    PYCARD promotes caspase-mediated apoptosis. Its proapoptotic activity is mediated predominantly through the activation of caspase 9. It may be a component of the inflammasome and part of a protein complex whose function would be the activation of pro-inflammatory caspases.

    GeneCards entry: http://www.genecards.org/cgi-bin/carddisp.pl?gene=PYCARD

  8. 8.

    NALP (NLR family, pyrin domain containing 1) is a protein involved in activation of caspase 1 and caspase 5 as part of the NALP1 inflammasome complex which leads to processing and release of IL-1β and IL-18.

    GeneCards entry: http://www.genecards.org/cgi-bin/carddisp.pl?gene=NLRP1

  9. 9.

    http://www.fda.gov/

Abbreviations

AP-1:

Activator protein 1

AR:

Androgen receptor

BMD:

Bone mineral density

CBP:

CREB-binding protein or CREBBP

CDC:

Centers for Disease Control and Prevention

cGMP:

current Good Manufacturing Practices

COX:

Cyclooxygenase

EFSA:

European Food Safety Authority

EGR-1:

Early growth response protein 1

eNOS:

Endothelial NOS

EpRE:

Electrophile-responsive element

FA:

Fatty acids

FDA:

Food and Drug Administration

GSH:

Glutathione or gamma-l-glutamyl-l-cysteinylglycine

H2O2 :

Hydrogen peroxide

IFN-γ:

Interferon gamma

IGF-I:

Insulin-like growth factor I

IGF-IR:

Insulin-like growth factor I receptor

IL-1β:

Interleukin 1 beta

iNOS:

Inducible NOS

JSW:

Joint space width

LOX:

Lipoxygenase

LPS:

Lipopolysaccharides

NAC:

N-acetylcysteine

NADPH:

Nicotinamide adenine dinucleotide phosphate

NALP:

Pyrin-like protein containing a pyrin domain

NF-κB:

Nuclear factor kappa B

NIAMS:

National Institute of Arthritis and Musculoskeletal and Skin Diseases

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NRF-2:

Nuclear respiratory factor 2

NSAID:

Nonsteroidal anti-inflammatory drug

OA:

Osteoarthritis

p300:

E1A binding protein p300

p53:

Protein 53 or tumour protein 53

PGE2 :

Prostaglandin E2

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PYCARD:

Apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)

RA:

Rheumatoid arthritis

RANK:

Receptor activator of nuclear factor kappa B

RANKL:

Receptor activator of nuclear factor kappa B ligand

ROS:

Reactive oxygen species

Sirt-1:

Sirtuin (silent mating type information regulation 2 homolog) 1

SLE:

Systemic lupus erythematosus

SOD:

Superoxide dismutase

STAT:

Signal transducer and activator of transcription

TGF-β:

Transforming growth factor beta

UN:

United Nations

WHO:

World Health Organization

References

  1. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  Google Scholar 

  2. Di Paola R, Cuzzocrea S (2008) Predictivity and sensitivity of animal models of arthritis. Autoimmun Rev 8:73–75

    Article  PubMed  Google Scholar 

  3. Aigner T, Rose J, Martin J et al (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7(2):134–145

    Article  PubMed  CAS  Google Scholar 

  4. Hamerman D (1998) Biology of the aging joint. Clin Geriatr Med 14:417–433

    PubMed  CAS  Google Scholar 

  5. Lotz MK, Carames B (2011) Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7(10):579–587

    PubMed  CAS  Google Scholar 

  6. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    PubMed  CAS  Google Scholar 

  7. Shane Anderson A, Loeser RF (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24:15–26

    Article  PubMed  CAS  Google Scholar 

  8. Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211

    Article  PubMed  Google Scholar 

  9. Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69:761–765

    Article  PubMed  Google Scholar 

  10. Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227

    Article  PubMed  Google Scholar 

  11. Sutton S, Clutterbuck A, Harris P et al (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179:10–24

    Article  PubMed  CAS  Google Scholar 

  12. Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  13. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    Article  PubMed  CAS  Google Scholar 

  14. Mease PJ, Hanna S, Frakes EP et al (2011) Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J Rheumatol 38:1546–1551

    Article  PubMed  CAS  Google Scholar 

  15. Loeser RF (2011) Aging and osteoarthritis. Curr Opin Rheumatol 23:492–496

    Article  PubMed  CAS  Google Scholar 

  16. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635

    Article  PubMed  CAS  Google Scholar 

  17. Parke DV, Sapota A (1996) Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 9:331–340

    PubMed  CAS  Google Scholar 

  18. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  19. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  20. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  PubMed  CAS  Google Scholar 

  21. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662

    Article  PubMed  CAS  Google Scholar 

  22. Tschopp J (2011) Mitochondria: Sovereign of inflammation? Eur J Immunol 41:1196–1202

    Article  PubMed  CAS  Google Scholar 

  23. Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4:715–728

    Article  PubMed  CAS  Google Scholar 

  24. Terkeltaub R, Johnson K, Murphy A, Ghosh S (2002) Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1:301–319

    Article  PubMed  CAS  Google Scholar 

  25. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169

    Article  PubMed  CAS  Google Scholar 

  26. Carames B, Taniguchi N, Otsuki S et al (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801

    Article  PubMed  CAS  Google Scholar 

  27. Jha P, Flather M, Lonn E et al (1995) The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical trial data. Ann Intern Med 123:860–972

    Article  PubMed  CAS  Google Scholar 

  28. Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400

    PubMed  CAS  Google Scholar 

  29. Meister A (1994) Glutathione, ascorbate, and cellular protection. Cancer Res 54(7 Suppl):1969s–1975s

    PubMed  CAS  Google Scholar 

  30. Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF et al (2002) Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol 17:1239–1267

    PubMed  CAS  Google Scholar 

  31. Mobasheri A, Bondy CA, Moley K et al (2008) Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines. Adv Anat Embryol Cell Biol 200:1 p following vi, 1–84

    Google Scholar 

  32. Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404

    Article  PubMed  CAS  Google Scholar 

  33. Henrotin Y, Kurz B (2007) Antioxidant to treat osteoarthritis: dream or reality? Curr Drug Targets 8:347–357

    Article  PubMed  CAS  Google Scholar 

  34. Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11:747–755

    Article  PubMed  CAS  Google Scholar 

  35. Pfander D, Gelse K (2007) Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 19:457–462

    Article  PubMed  CAS  Google Scholar 

  36. Lafont JE (2010) Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int J Exp Pathol 91:99–106

    Article  PubMed  CAS  Google Scholar 

  37. Imhof H, Sulzbacher I, Grampp S et al (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588

    Article  PubMed  CAS  Google Scholar 

  38. Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2:217–233

    Article  PubMed  CAS  Google Scholar 

  39. Findlay DM (2007) Vascular pathology and osteoarthritis. Rheumatology (Oxford) 46:1763–1768

    Article  CAS  Google Scholar 

  40. Henrotin Y, Deby-Dupont G, Deby C et al (1992) Active oxygen species, articular inflammation and cartilage damage. EXS 62:308–322

    PubMed  CAS  Google Scholar 

  41. Hiran TS, Moulton PJ, Hancock JT (1998) In situ detection of superoxide anions within porcine articular cartilage. Br J Biomed Sci 55:199–203

    PubMed  CAS  Google Scholar 

  42. Moulton PJ, Hiran TS, Goldring MB et al (1997) Detection of protein and mRNA of various components of the NADPH oxidase complex in an immortalized human chondrocyte line. Br J Rheumatol 36:522–529

    Article  PubMed  CAS  Google Scholar 

  43. Hiran TS, Moulton PJ, Hancock JT (1997) Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23:736–743

    Article  PubMed  CAS  Google Scholar 

  44. Moulton PJ, Goldring MB, Hancock JT (1998) NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit. Biochem J 329(Pt 3):449–451

    PubMed  CAS  Google Scholar 

  45. Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430

    Article  PubMed  Google Scholar 

  46. He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF (2012) N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol 32:980–985

    Google Scholar 

  47. Ueno T, Yamada M, Sugita Y, Ogawa T (2011) N-acetyl cysteine protects TMJ chondrocytes from oxidative stress. J Dent Res 90:353–359

    Article  PubMed  CAS  Google Scholar 

  48. Nakagawa S, Arai Y, Mazda O et al (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28:156–163

    PubMed  CAS  Google Scholar 

  49. Li WQ, Dehnade F, Zafarullah M (2000) Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275:789–794

    Article  PubMed  CAS  Google Scholar 

  50. Vaillancourt F, Fahmi H, Shi Q et al (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10:R107

    Article  PubMed  Google Scholar 

  51. Studer RK (2004) Nitric oxide decreases IGF-1 receptor function in vitro; glutathione depletion enhances this effect in vivo. Osteoarthritis Cartilage 12:863–869

    Article  PubMed  CAS  Google Scholar 

  52. Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7:271–275

    Article  PubMed  CAS  Google Scholar 

  53. Afonso V, Champy R, Mitrovic D et al (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329

    Article  PubMed  CAS  Google Scholar 

  54. Baker MS, Feigan J, Lowther DA (1988) Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J Rheumatol 15:670–677

    PubMed  CAS  Google Scholar 

  55. Deahl ST 2nd, Oberley LW, Oberley TD et al (1992) Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J Bone Miner Res 7:187–198

    Article  PubMed  CAS  Google Scholar 

  56. Michiels C, Raes M, Zachary MD, Delaive E, Remacle J (1988) Microinjection of antibodies against superoxide dismutase and glutathione peroxidase. Exp Cell Res 179:581–589

    Article  PubMed  CAS  Google Scholar 

  57. McGregor GP, Biesalski HK (2006) Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9:697–703

    Article  PubMed  CAS  Google Scholar 

  58. Muhlhofer A, Mrosek S, Schlegel B et al (2004) High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 58:1151–1158

    Article  PubMed  CAS  Google Scholar 

  59. Hak AE, Choi HK (2008) Lifestyle and gout. Curr Opin Rheumatol 20(2):179–186

    Article  PubMed  Google Scholar 

  60. Sale JE, Gignac M, Hawker G (2008) The relationship between disease symptoms, life events, coping and treatment, and depression among older adults with osteoarthritis. J Rheumatol 35:335–342

    PubMed  Google Scholar 

  61. Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130:769–774

    Article  PubMed  CAS  Google Scholar 

  62. Curtis CL, Rees SG, Little CB et al (2002) Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum 46:1544–1553

    Article  PubMed  CAS  Google Scholar 

  63. Henrotin Y, Mobasheri A, Clutterbuck AL et al (2010) Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 18:141–149

    Article  PubMed  CAS  Google Scholar 

  64. Lee B, Moon SK (2005) Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J Nutr 135:2767–2773

    PubMed  CAS  Google Scholar 

  65. Annabi B, Currie JC, Moghrabi A, Beliveau R (2007) Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leukemia Res 31:1277–1284

    Article  CAS  Google Scholar 

  66. Kim M, Murakami A, Ohigashi H (2007) Modifying effects of dietary factors on (-)-epigallocatechin-3-gallate-induced pro-matrix metalloproteinase-7 production in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem 71:2442–2450

    Article  PubMed  CAS  Google Scholar 

  67. Kong CS, Kim YA, Kim MM et al (2008) Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol In Vitro 22:1742–1748

    Article  PubMed  CAS  Google Scholar 

  68. Vijayababu MR, Arunkumar A, Kanagaraj P et al (2006) Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem 287:109–116

    Article  PubMed  CAS  Google Scholar 

  69. Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148

    Article  PubMed  Google Scholar 

  70. Shakibaei M, Buhrmann C, Mobasheri A (2011) Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem 286:11492–11505

    Article  PubMed  CAS  Google Scholar 

  71. ClinicalTrials.gov (2012) A service of the National Institutes of Health (NIH). [cited 20 Mar 2012]. Available from: http://clinicaltrials.gov/

  72. Curcumin in Rheumatoid Arthritis (2012) [cited 20 Mar 2012]. Available from: http://clinicaltrials.gov/show/NCT00752154

    Google Scholar 

  73. Limbrel (2012) [cited 20 Mar 2012]. Available from: http://www.limbrel.com/

  74. Study of flavocoxid (Limbrel) versus naproxen in subjects with moderate-severe osteoarthritis of the knee. Available from: http://clinicaltrials.gov/ct2/show/NCT00928837

  75. The European Food Safety Authority (EFSA) (2012) [cited 20 Mar 2012]. Available from: http://www.efsa.europa.eu/

  76. EFSA Panel on Dietetic Products NaAN (2009) Scientific opinion on the substantiation of health claims related to glucosamine alone or in combination with chondroitin sulphate and maintenance of joints (ID 1561, 1562, 1563, 1564, 1565) and reduction of inflammation (ID 1869) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 7(9):1264 [17 pp]

    Google Scholar 

  77. Lean JM, Davies JT, Fuller K et al (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. Mobasheri wishes to acknowledge the financial support of the Wellcome Trust, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (grant number: Mobasheri.A.28102007), the Biotechnology and Biological Sciences Research Council (BBSRC) (grants BBSRC/S/M/2006/13141 and BB/G018030/1) and the Engineering and Physical Sciences Research Council (EPSRC). A. Mobasheri and Y. Henrotin are members of the D-BOARD Consortium funded by European Commission Framework 7 program (EU FP7; HEALTH.2012.2.4.5–2, project number 305815, NovelDiagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mobasheri D.Phil. (Oxon) .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

This chapter was written by the authors within the scope of their academic and research positions at their host institutions. None of the authors has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mobasheri, A., Shakibaei, M., Biesalski, H.K., Henrotin, Y. (2013). Antioxidants in the Treatment of Osteoarthritis and Bone Mineral Loss. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_15

Download citation

Publish with us

Policies and ethics