Skip to main content
Book cover

Taurine 8 pp 195–214Cite as

Taurine Effects on Emotional Learning and Memory in Aged Mice: Neurochemical Alterations and Differentiation in Auditory Cued Fear and Context Conditioning

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 775))

Abstract

Previously we have shown FVB/NJ mice given taurine acutely (i.e. 43 mg/kg/s.c. [aTau]) is anxiolytic, whereas chronically (0.05% w/v for >4 weeks [cTau]) produces anxiogenic phenotypes under select aversive behavioral experiments, but negated emotional contributions to acquisition learning and retention. Hyperexcitability induced in c-Tau mice is further exacerbated under stressful conditions compromising discrimination between cognitive vs. emotional learning. In the present study, we investigated differences between a-Tau and c-Tau mice using the auditory cued tone (ACTC) and context conditioning (CC) tests. Consistent with previous results, a-Tau mice exhibit less fear and increased inhibition, whereas c-Tau mice exhibit increased fear and decreased inhibition to ACTC and CC. Once fear conditioned, taurine mice become hypersensitive to novel environments and ACTC. Taurine brain levels are noted to increase in response to stressors as a neuroprotective mechanism against hyperexcitability. We suggest that c-Tau mice have increased accumulation of cysteamine (Cyst) and depleted somatostatin (SS) expression resulting in fear disregulation through GABAergic projection neurons in the limbic system, which are not seen in a-Tau mice. Our findings suggest that taurine causes not only varied phenotypic profiles of emotional fear learning, but are further complicated by the inability to associate cues with aversive stimuli due to potential auditory sensory overloading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aTau:

Acute taurine

cTau:

Chronic taurine

ACTC:

Auditory cued tone conditioning

CC:

Context conditioning

Cyst:

Cysteamine

SS:

Somatostatin

References

  • Baskhit C, Swerdlow N (1986) Behavioral changes following central injection of cysteamine in rats. Brain Res 365:159–163

    Article  Google Scholar 

  • Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60:322–328

    Article  PubMed  Google Scholar 

  • Barbeau A, Inoue N, Tsukada Y, Butterworth RF (1975) The neuropharmacology of taurine. Life Sci 17(5):669–677

    Article  PubMed  CAS  Google Scholar 

  • Baskin SI, Hinkamp DL, Marquis WJ, Tilson HA (1974) Effects of taurine on psychomotor activity in the rat. Neuropharmacology 13(7):591–594

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739

    Article  PubMed  CAS  Google Scholar 

  • Besson JM (1999) The neurobiology of pain. Lancet 353:1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67:370–375

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury D, Colwell CS (2002) Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res 133:95–108

    Article  PubMed  Google Scholar 

  • Chen SW, Kong WX, Zhang YJ, Li YL, Mi XJ, Mu XS (2004) Possible anxiolytic effects of taurine in the mouse elevated plus maze. Life Sci 75(12):1503–1511

    Article  PubMed  CAS  Google Scholar 

  • DeNoble VJ, Helper DJ, Barto RA (1989) Cysteamine-induced depletion of somatostatin produces differential cognitive deficits in rats. Brain Res 482:42–48

    Article  PubMed  CAS  Google Scholar 

  • De Oca BM, DeCola JP, Maren S, Fanselow MS (1998) Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci 18:3426–3432

    PubMed  Google Scholar 

  • El Idrissi A, Iskra BS, Neuwirth LS (2011) Neurobehavioral effects of taurine in Fragile X syndrome. In: El Idrissi A, L’Amoreaux WJ (eds) Taurine in health and disease, vol 644. Plenum Press, New York, pp 306–345

    Google Scholar 

  • El Idrissi A, Neuwirth LS, L’Amoreaux WL (2010) Taurine regulation of short term synaptic plasticity in Fragile X mice. J Biomed Sci 17(Suppl 1):S15

    Article  PubMed  Google Scholar 

  • El Idrissi A, Boukarrou L, Heany W, Malliaros G, Sangdee C, Neuwirth LS (2009) Effects of taurine on anxiety-like and locomotor behavior of mice. In: Azuma J, Schaffer SW, Takashi I (eds) Taurine 7: taurine for the future healthcare, vol 643. Springer, New York, pp 207–215

    Google Scholar 

  • El Idrissi A (2008) Taurine improves learning and retention in aged mice. Neurosci Lett 436:19–22

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, L’Amoreaux WJ (2008) Selective resistance of taurine-fed mice to isoniazid-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience 156(3):693–699

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Ding X-H, Scalia J, Trenkner E, Brown WT, Dobkin C (2005) Decreased GABAA receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377:141–146

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures through taurine. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5 beginning the 21st century, Adv Exp Med Biol, Kluwer Press, New York, 526, pp 515–525

    Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  CAS  Google Scholar 

  • Engine E, Treit D (2009) Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl) 206:281–289

    Article  Google Scholar 

  • Fanselow MS (1990) Factors governing one-trial contextual conditioning. Anim Learn Behav 18:264–270

    Article  Google Scholar 

  • Faron-Górecka A, Kusmider M, Zurawek D, Gaska M, Gruca P, Papp M, Dziedzicka-Wasylewska M (2011) P.1.028 Serum levels of somatostatin-28 and its binding sites in medial habenular nucleus differentiate rats responding and non responding to chronic mild stress. Eur Neuropsychopharmacol 21:S131–S132. doi:10.1016/S0924-977X(11)70151-1

    Article  Google Scholar 

  • Haroutunian V, Mantin R, Campbell GA, Tsuboyama GK, Davis KL (1987) Cysteamine-induced depletion of central somatostatin-like immunoactivity: effects on behavior, learning, memory, and brain neurochemistry. Brain Res 403:234–242

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Oshima K (1986) Neuropeptides in cerebral cortex of macaque monkey (Macaca fuscata fuscata): regional distribution and ontogeny. Brain Res 364:360–368

    Article  PubMed  CAS  Google Scholar 

  • Hayes KC, Carey SY, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188(4191):949–951

    Article  PubMed  CAS  Google Scholar 

  • Hruska RE, Thut PD, Huxtable RJ, Bressler R (1975) Suppression of conditioned drinking by taurine and related compounds. Pharmacol Biochem Behav 3(4):593–599

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ, Peterson A (1989) Sodium-dependent and sodium-independent binding of taurine to rat brain synaptosomes. Neurochem Int 14(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Ikeda HC (1977) Effects of taurine on alcohol withdrawal. Lancet 2(8036):509

    Article  PubMed  CAS  Google Scholar 

  • Joseph MH, Emson PC (1976) Taurine and cobalt induced epilepsy in the rat: a biochemical and electrocorticographic study. J Neurochem 27:1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Khalilov I, Le Van Quyen M, Gozlan H, Ben-Ari Y (2005) Epileptogenic actions of GABA and fast oscillations in the developing hippocampus. Neuron 48:787–796

    Article  PubMed  CAS  Google Scholar 

  • Kluge C, Stoppel C, Szinyei C, Stork O, Pape HC (2008) Role of the somatostatin system in contextual fear memory and hippocampal synaptic plasticity. Learn Mem 4:252–260

    Article  Google Scholar 

  • Knapska E, Nikolaev E, Boguszewski P, Walasek G, Blaszczyk J, Kaczmarek L, Werka T (2006) Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc Natl Acad Sci U S A 103(10):3858–3862

    Article  PubMed  CAS  Google Scholar 

  • Kong WX, Chen SW, Li YL, Zhang YJ, Wang R, Min L, Mi X (2006) Effects of taurine on rat behaviors in three anxiety models. Pharmacol Biochem Behav 83(2):271–276

    Article  PubMed  CAS  Google Scholar 

  • Krantic S, Goddard I, Saveanu A, Giannetti N, Fombonne J, Cardoso A, Jaquet P, Enjalbert A (2004) Novel modalities of somatostatin actions. Eur J Endocrinol 151:643–655

    Article  PubMed  CAS  Google Scholar 

  • Kusmider M, Faron-Górecka A, Zurawek D, Gaska M, Gruca P, Papp M, Dziedzicka-Wasylewska M (2011) P.1.029 Alterations in somatostatin binding sites in brains of rats subjected to chronic mild stress. Eur Neuropsychopharmacol 21:S132. doi:10.1016/S0924-977X(11)70152-3

    Article  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (1994) Emotion, memory and the brain. Sci Am 270:50–57

    Article  PubMed  CAS  Google Scholar 

  • Levinskaya N, Trenkner E, El Idrissi A (2006) A Increased GAD-positive neurons in the cortex of taurine-fed mice. Adv Exp Med Biol 583:411–417

    Article  PubMed  CAS  Google Scholar 

  • Lydiard RB, Ballenger JC, Rickles K, for the Abecarmil Work Group. (1997) A double-blind evaluation of the safety and efficacy of abecarmil, alprazolam and placebo in outpatients with generalized anxiety disorder. J. Clin. Psychiatry 58:11–18

    Google Scholar 

  • Martin EI, Ressler KJ, Binder E, Nemeroff CB (2009) The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 32:549–575

    Article  PubMed  Google Scholar 

  • Matsuoka N, Maeda N, Yamaguchi I, Satoh M (1994) Possible involvement of brain somatostatin in the memory formation of rats and cognitive enhancing action of FR121196 in passive avoidance task. Brain Res 642:11–19

    Article  PubMed  CAS  Google Scholar 

  • McLay RN, Pan W, Kastin AJ (2001) Effects of peptides on animal and human behavior: a review of studies published in the first twenty years of the journal Peptides. Peptides 22:2181–2255

    Article  PubMed  CAS  Google Scholar 

  • Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neursci Biobehav Rev 2012(36):1773–1802

    Article  Google Scholar 

  • Perry TL (1976) Hereditary mental depression with taurine deficiency: further studies, including a therapeutic trial of taurine administration. In: Huxtable R, Barbeau A (eds) Taurine, Adv Exp Med Biol, Raven Press, New York, 526, pp 365–374

    Google Scholar 

  • Riback CE, Lauterborn JC, Navetta MS, Gall CM (1993) The inferior colliculus of GEPRs contains greater numbers of cells that express glutamate decarboxylase (GAD67) mRNA. Epilepsy Res 14:105–113

    Article  Google Scholar 

  • Rickels K, Schweizer E (1997) The clinical presentation of generalized anxiety in primary-care setting: practical concepts of classification and management. J Clin Psychiatry 58:4–9

    PubMed  Google Scholar 

  • Sanberg PR, Fibiger HC (1979) Impaired acquisition and retention of a passive avoidance response after chronic ingestion of taurine. Psychopharmacology 29(62)1:97–99

    Article  CAS  Google Scholar 

  • Sanberg PR, Ossenkopp KP (1977) Dose-response effects on some open-field behaviors in the rat. Psychopharmacology (Berl) 53(2):207–209

    Article  CAS  Google Scholar 

  • Schettini G, Florio T, Magri G, Grimaldi M, Meucci O, Landolfi E, Marino A (1998) Somatostatin and SMS 201-995 reverse the impairment of cognitive functions induced by cysteamine depletion of brain somatostatin. Eur J Pharmacol 151:399–407

    Article  Google Scholar 

  • Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329–336

    Article  PubMed  Google Scholar 

  • Suge R, Nobuo H, Furube M, Yamamoto T, Hirayama A, Hirano S, Nomura M (2007) Specific timing of taurine supplementation affects learning ability in mice. Life Sci 81:1228–1234

    Article  PubMed  CAS  Google Scholar 

  • Szabo S, Reichlin S (1981) Somatostatin in rat tissues is depleted by cysteamine administration. Endocrinology 109:2255–2257

    Article  PubMed  CAS  Google Scholar 

  • Van Nobelen M, Kokkinidis L (2006) Amygdaloid gaba, not glutamate neurotransmission mRNA transcription controls foot-shock associated arousal in the acoustic startle paradigm. Neuroscience 137:707–716

    Article  PubMed  Google Scholar 

  • Vecsei L, Widerlov E (1990) Preclinical and clinical studies with cysteamine and pantethine related to the central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 14:835–862

    PubMed  CAS  Google Scholar 

  • Vecsei L, Pavo I, Zsigo J, Penke B, Widerlov E (1989) Comparative studies of somatostatin-14 and some of its fragments on passive avoidance behavior, open field activity and on barrel rotation phenomenon in rats. Peptides 10:1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Wehner JM, Radcliffe RA (2004) Cued and contextual fear conditioning in mice. Behav Neurosci 27:8.5C.1–8.5C.14

    Google Scholar 

  • Wittchen HU (2002) Generalized anxiety disorder: prevalence, burden, and cost to society. Depress Anxiety 16:162–171

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PSC-CUNY and CSI. We would like to thank the Louis Stokes Alliance for Minority Participation (LSAMP-NSF) and the CSI-CSTEP program for supporting author L.S. Neuwirth. We would also like to acknowledge Michael Johnson Jr. for assistance with collecting and analyzing the behavior data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz S. Neuwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Neuwirth, L.S., Volpe, N.P., Idrissi, A.E. (2013). Taurine Effects on Emotional Learning and Memory in Aged Mice: Neurochemical Alterations and Differentiation in Auditory Cued Fear and Context Conditioning. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_17

Download citation

Publish with us

Policies and ethics