Skip to main content

Genetic Approaches to Improve Salinity Tolerance in Plants

Abstract

Abiotic stress tolerance in plants is gaining importance day by day. Different techniques are being employed to develop salt tolerant plants that directly or indirectly combat global food problems. Advanced comprehension of stress signal perception and transduction of associated molecular networks is now possible with the development in functional genomics and high throughput sequencing. In plant stress tolerance various genes, proteins, transcription factors, DNA histone-modifying enzymes, and several metabolites are playing very important role in stress tolerance. Determination of genomes of Arabidopsis, Oryza sativa spp. japonica cv. Nipponbare and integration of omics approach has augmented our knowledge pertaining to salt tolerance mechanisms of plants in natural environments. Application of transcriptomics, metabolomics, bioinformatics, and high-through-put DNA sequencing has enabled active analyses of regulatory networks that control abiotic stress responses. To unravel and exploit the function of genes is a major challenge of the post genomic era. This chapter therefore reviews the effect of salt stress on plants and the mechanism of salinity tolerance along with contributory roles of QTL, microRNA, microarray and proteomics.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi F, Komatsu S (2004) A proteomic approach to analyze salt responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    CAS  Google Scholar 

  • Ahmad P, Jhon R, Sarwat M, Umar S (2008) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Production 2(4):353–366

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidats in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Bhardwaj R, Tuteja N (2012a) Plant signaling under abiotic stress environment. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. 10.1007/978-1-4614-0815-4_12, © Springer Science+Business Media, LLC 2012

    Chapter  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Hakeem KR, Azooz MM, Sharma S (2012b) Polyamines: role in plants under abiotic stress. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. pp 490–512, © Springer Science+Business Media, LLC 2012

    Google Scholar 

  • Amaya I, Rotella MA, Calle M, Medina MI, Heredia A, Bressan RA et al (1999) Improved germination under osmotic stress of tobacco plants over-expressing a cell wall peroxidase. FEBS Lett 457:80–84

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Sistrunk ML, Polisensky DH, Xu W, Purugganan MM, Antosiewicz DM et al (1997) Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta 203:35–41

    Article  Google Scholar 

  • Chen X (2004) A microRNA as translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50(10):1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Bulcke VM, Bauw G, Montagu MV (1990) Characterization of rice gene showing organ specific expression in response to salt stress and drought. Plant Cell 2:19–27

    PubMed  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  PubMed  CAS  Google Scholar 

  • Dubey H, Grover A (2000) Current initiatives in proteomic research: the plant perspective. Curr Sci 80:262–269

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw-2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    Article  PubMed  CAS  Google Scholar 

  • Guleria P, Goswami D, Mahajan M, Kumar V, Bhardwaj J, Kumar SY (2012) MicroRNAs and their role in plants during abiotic stresses. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. 10.1007/978-1-4614-0815-4_12, © Springer Science+Business Media, LLC 2012

    Google Scholar 

  • Gygi SP, Rist B, Aebersold R (2000) Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 11:396–401

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Burnet M (1994) Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In: Cherry JH (ed) Cell biology: biochemical and cellular mechanisms of stress tolerance in plants, NATO ASI series H. Springer, Berlin, pp 291–302

    Chapter  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Lakhineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Ä1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24(16):1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Huh G-H, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  PubMed  CAS  Google Scholar 

  • Inan G, Zhang Q, Li P et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  PubMed  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Khan MR, Mohiddin FA, Khan MM (2007) Effect of low levels of SO2 on the growth and yield of indigenous germplasm of black mustard. Environ Biol Conservat 12:53–57

    Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed  CAS  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (2006) Identification of plant stress-responsive determinants in Arabidopsis by large scale forward genetic screens. J Exp Bot 57:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Science + business media, New York, pp 1–28

    Chapter  Google Scholar 

  • Lilley KS, Dupree P (2007) Plant organelle proteomics. Curr Opin Plant Biol 10:594–599

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA et al (2004) QTLs for Na  +  and K  +  uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  PubMed  CAS  Google Scholar 

  • Majoul T, Bancel E, Triboi E, Hamida B, Branlard G (2003) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175–183

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biol Chem 70:437–473

    CAS  Google Scholar 

  • Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycine betain and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. 10.1007/978-1-4614-0634-1, © Springer Science+Business Media, LLC 2012

    Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold inducible downstream genes of the arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38(6):982–993

    Article  PubMed  CAS  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • Mestichelli LJJ, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254:640–647

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Montagu MV, Van der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol 107:177–186

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Nenova V (2008) Growth and mineral concentrations of pea plants under different salinity levels and iron supply. Gen Appl Plant Physiol 34(3–4):189–202

    CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross tolerance to stress. The central role of ‘redox’ and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  PubMed  CAS  Google Scholar 

  • Patade VY, Suprasanna P (2010) Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves. J Crop Sci Biotechnol 13(3):177–182

    Article  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecules hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agarawal GK (2003) Rice proteomics: current status and future perspectives. Electrophoresis 24:3378–3389

    Article  PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Rich PJ, Brunk DG, Ju GC, Rhodes JC, Pauly MH, Hansen LA (1989) Development of two isogenic sweet corn hybrids differing for glycine betaine content. Plant Physiol 9:1112–1121

    Article  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase in crop yield under drought conditions. Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748

    Article  PubMed  CAS  Google Scholar 

  • Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNA from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  PubMed  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Türkan I, Demiral T (2008) Salinity tolerance mechanisms of higher plants. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International, New Delhi, pp 106–123

    Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta S, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 1 6(7):363–371

    Article  Google Scholar 

  • Wang J, Zuo K, Wu W, Song J, Sun X, Lin J et al (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plantarum 48:509–515

    Article  CAS  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphry-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Qin F, Tran Lam-Son P (2012) Transcription factors involved in environmental stress responses in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance 297 of plants in the era of climate change. 10.1007/978-1-4614-0815-4_12, © Springer Science+Business Media, LLC 2012

    Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen HM, Shinn P, Palm CJ, Southwick AM, Wu AC, Kim C, Nguyen M et al (2003) Empirical analysis of transcriptional activity in the arabidopsis genome. Science 302:842–846

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice roots. Proteomics 5:235–244

    Article  PubMed  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GC (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX (2007) Identification of drought induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ashwani Kumar acknowledges the Claude Leon Foundation and National Research Foundation (NRF), South Africa for providing Postdoctoral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, A., Gupta, A., Azooz, M.M., Sharma, S., Ahmad, P., Dames, J. (2013). Genetic Approaches to Improve Salinity Tolerance in Plants. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_4

Download citation

Publish with us

Policies and ethics