Skip to main content

Recent Advances of Metabolomics to Reveal Plant Response During Salt Stress

  • Chapter
  • First Online:

Abstract

Salt stress is the major limiting factor in agriculture and portraits a major challenge to food security. The adverse effect of salt stress is expressed on whole plant levels. Plants have acquired various processes that functions to balance cellular hyperosmolarity and ion disequilibrium in an effort to combat salt stress. These processes occur due to significant changes in the gene expression that in turn bring about changes in plant metabolism. These metabolic changes help the plant to adapt to disorganized metabolic homeostasis. It has been observed that adverse growth conditions have impact on the synthesis of secondary plant products or metabolites that help in plant defence. The diverse nature of these metabolites has lead to the development of ‘Metabolomics’. The metabolite fingerprinting and profiling approaches provides accurate identification and quantification of stressed sample even before they can bring about change(s) in the transcriptome or proteome. Using metabolic profile changes as a marker for stress physiology, metabolic movements and factors can be analysed in combination with other ‘omic’ techniques, such as transcriptomics. Revealed analyses of salt acclimation effects and related stress factors to salinity stress may provide help in crop breeding programs to develop salt tolerance varieties. In this review, we will focus on recent advancements and application of metabolomics in plants under salinity stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci 56(5):575–588

    Article  CAS  Google Scholar 

  • Ahmad P, John R (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arch Agron Soil Sci 51:665–672

    Article  CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    Google Scholar 

  • Ahmad P, Sharma S (2010) Physio-biochemical attributes in two cultivars of mulberry (M. alba) under NaHCO3 stress. Int J Plant Produc 4(2):79–86

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jeleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Intern 2(1):11–20

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    Article  CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010c) Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht\Heidelberg\London\NY, pp 99–108

    Chapter  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidats in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Aust J Plant Physiol 15:447–464

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baxter IR, Borevitz JO (2006) Mapping a plant’s chemical vocabulary. Nat Genet 38:737–738

    Article  PubMed  CAS  Google Scholar 

  • Bayuelo-Jimenez JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crops Res 80:207–222

    Article  Google Scholar 

  • Beckman M, Enot DP, Overy DP, Draper J (2007) Representation, comparison and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem 55:3444–3451

    Article  Google Scholar 

  • Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trend Plant Sci 23:28–33

    CAS  Google Scholar 

  • Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends in Biotechnol 24:543–548

    Article  CAS  Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A et al (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101

    Article  PubMed  Google Scholar 

  • Chinnusamy V, Stevenson B, Lee B, Zhu JK (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE 2002(140):Pl10

    Article  PubMed  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • Crawford RMM (1989) Studies in plant survival. Blackwell Scientific, Oxford\London\Edinburgh\Boston\Palo Alto\Melbourne

    Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99

    Chapter  Google Scholar 

  • Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography–mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fraser PD, Enfissi EMA, Goodfellow M, Eguchi T, Bramley PM (2007) Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant J 49:552–564

    Article  PubMed  CAS  Google Scholar 

  • Gagneul D, Ainouche A, Duhaze C, Lugan R, Lahrer FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  PubMed  CAS  Google Scholar 

  • Gong QQ, Li PH, Ma SS, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Gorham J (1990) Salt tolerance in Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41:623–627

    Article  CAS  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis)harmony molds plant health and disease. Science 324:750–752

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M et al (2003) The Arabidopsis CDPK– SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T (1992) Commelinin, a highly associated metalloanthocyanin present in the blue flower petals of Commelina communis. Nature 358:515–517

    Article  CAS  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. doi:10.1093/jxb/err460

    Google Scholar 

  • Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione-S-transferase in plants. Ann Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Martin TFJ (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Biol 14:231–264

    Article  CAS  Google Scholar 

  • Mastrobuoni G, Irgang S, Pietzke M, Wenzel M, Assmus HE, Schulze WX, Kempa S (2012) Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMCGenomics 13:215

    CAS  Google Scholar 

  • Memelink J (2004) Tailoring the plant metabolome without a loose stitch. Trends Plant Sci 7:305–307

    Google Scholar 

  • Mikami K, Katagiri T, Luchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signaling in plants. Biochim Biophy Acta 1389:222–272

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, Tonnet M, Shennan C, Gardner A (1988) Effect of high external NaCl concentrations on ion transport within the shoot of Lupinus albus II. ions in phloem sap. Plan Cell Environ 11:291–300

    Article  CAS  Google Scholar 

  • Munns R, Cramer GR, Ball MC (1999) Interactions between rising CO2, soil salinity and plant growth. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, London, pp 139–167

    Chapter  Google Scholar 

  • Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol 643:1–13

    Article  PubMed  Google Scholar 

  • Park S, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxi Redox Signal 8:1757–1764

    Article  CAS  Google Scholar 

  • Popp M (1995) Salt resistance in herbaceous halophytes and mangroves. Prog Bot 56:416–429

    Article  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Sachan N, Rogers DT, Yun KY, Littleton JM, Falcone DL (2010) Reactive oxygen species regulate alkaloid metabolism in undifferentiated N. tabacum cells. Plant Cell Rep 29:437–448

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics – ‘majority report by precogs’. Trends Plant Sci 13:36–43

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Planta 132:209–219

    CAS  Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2012) Ca2+ signals: the versatile decoders of environmental cues. Crit Rev Biotechnol, 9 May 2012. [Epub ahead of print]

    Google Scholar 

  • Savirnata NM, Jukunen-Titto R, Oksanen E, Karjalainen RO (2010) Leaf phenolic compounds in red clover (Trfolium Pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut 158:440–446

    Article  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50:37–47

    Article  PubMed  CAS  Google Scholar 

  • Schafer H, Wink MM (2009) Edicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    Article  PubMed  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signaling and engineering of drought hardiness in plants. Nature 410:327–330

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol Planta 122:487–494

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomics 9:125–134

    Article  PubMed  CAS  Google Scholar 

  • Sreevidya VS, Srinivasa RC, Rao C, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soyabean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na  +  transport in higher plants. Ann Bot 91:503–507

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:1–10

    Article  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Weston DJ, Gunter LE, Rogers A, Wullschlerger SD (2008) Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2:16

    Article  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    Article  PubMed  CAS  Google Scholar 

  • Zuther E, Koehl K, Kopka J (2007) Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Berlin\Heidelberg\New York, pp 285–315

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chandna, R., Azooz, M.M., Ahmad, P. (2013). Recent Advances of Metabolomics to Reveal Plant Response During Salt Stress. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_1

Download citation

Publish with us

Policies and ethics