Skip to main content
Book cover

Taurine 8 pp 199–215Cite as

Comparative Evaluation of the Effects of Taurine and Thiotaurine on Alterations of the Cellular Redox Status and Activities of Antioxidant and Glutathione-Related Enzymes by Acetaminophen in the Rat

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 776))

Abstract

The present study was carried out to ascertain the impact of replacing the sulfonate group of TAU with thiosulfonate, as present in thiotaurine (TTAU), on the protective actions of TAU against hepatocellular damage and biochemical alterations related to oxidative stress and glutathione redox cycling, synthesis, and utilization caused by a high dose of acetaminophen (APAP). To this end, male Sprague-Dawley rats, 225–250 g, were intraperitoneally treated with a 2.4 mmol/kg dose of TAU (or TTAU), followed 30 min later by 800 mg/kg of APAP. A reference group received 2.4 mmol/kg of N-acetylcysteine (NAC) prior to APAP. Naive rats served as controls. The animals were sacrificed 6 h after receiving APAP and their blood and livers were collected. Plasma and liver homogenates were analyzed for indices of cell damage (plasma transaminases, plasma lactate dehydrogenase), ­oxidative stress (malondialdehyde = MDA, reduced glutathione = GSH, glutathione disulfide = GSSG, catalase, glutathione peroxidase, superoxide dismutase), glutathione cycling (glutathione reductase), utilization (glutathione S-transferase), and synthesis (γ-glutamylcysteine synthetase) activities. APAP increased MDA formation and lowered the GSH/GSSG ratio and all enzyme activities, especially those of antioxidant enzymes. In general, TTAU was equipotent with NAC and more potent than TAU in protecting the liver. Taken into account the results of a previous study comparing the actions of TAU and hypotaurine (HTAU), the sulfinate analog of TAU, it appears that the sulfinate and thiosulfonate analogs are somewhat more effective than the parent sulfonate TAU in counteracting APAP-induced hepatic alterations in the liver and plasma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APAP:

Acetaminophen

TAU:

Taurine

TTAU:

Thiotaurine

NAC:

N-acetylcysteine

ALT:

Alanine transaminase

AST:

Aspartate transaminase

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

CAT:

Catalase

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

GS:

γ-Glutamylcysteine synthetase

GR:

Glutathione reductase

GST:

Glutathione S-transferase

References

  • Acharya M, Lau-Cam CA (2010) Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci 17(Suppl 1):S35

    Article  PubMed  Google Scholar 

  • Adams JD, Lauterburg BH, Mitchell JR (1983) Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther 227:749–754

    PubMed  CAS  Google Scholar 

  • Adamson GM, Harman AW (1989) A role for the glutathione peroxidase/reductase enzyme system in the protection from paracetamol toxicity in isolated mouse hepatocytes. Biochem Pharmacol 38:3323–3330

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Akai S, Hosomi H, Minami K, Tsuneyama K, Katoh M, Nakajima M, Yokoi T (2007) Knock down of γ-glutamylcysteine synthetase in rat causes acetaminophen-induced hepatotoxicity. J Biol Chem 282:23996–24003

    Article  PubMed  CAS  Google Scholar 

  • Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55–138

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  • Cotter MA, Thomas J, Cassidy P et al (2007) Melanoma in mice stress/damage and delays onset of ultraviolet-induced N-acetylcysteine. Clin Cancer Res 13:5952–5958

    Article  PubMed  CAS  Google Scholar 

  • Chung LJ, Tong MJ, Busuttil RW, Hiatt JR (2009) Acetaminophen hepatotoxicity and acute liver failure. J Clin Gastroenterol 43:342–349

    Article  Google Scholar 

  • Duong CD, Loh JY (2006) Basic review. Laboratory monitoring in oncology. J Oncol Pharm Pract 12:223–236

    Article  PubMed  Google Scholar 

  • Egawa M, Kohno Y, Kumano Y (1999) Oxidative effects of cigarette smoke on the human skin. Int J Cosmet Sci 21:83–98

    Article  PubMed  CAS  Google Scholar 

  • Gossai D, Lau-Cam CA (2009) The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in rat erythrocytes. Adv Exp Med Biol 643:359–368

    Article  PubMed  CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 246:7130–7139

    Google Scholar 

  • Hayes JD, Strange RC (1995) Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res 22:193–207

    Article  PubMed  CAS  Google Scholar 

  • Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK (2000) Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 97:12741–12745

    Article  PubMed  CAS  Google Scholar 

  • Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol  (196):369–405

    Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H, Knight TR, Bajt ML (2003) The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 144:279–288

    Article  PubMed  CAS  Google Scholar 

  • Ketterer B, Coles B, Meyer DJ (1983) The role of glutathione in detoxication. Environ Health Perspect 49:59–69

    Article  PubMed  CAS  Google Scholar 

  • Lauterburg BH, Corcoran GB, Mitchell JR (1983) Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest 71:980–991

    Article  PubMed  CAS  Google Scholar 

  • Lee WM (2007) Acetaminophen toxicity: changing perceptions on a social/medical issue. Hepatology 46:966–970

    Article  PubMed  Google Scholar 

  • Lores Arnaiz S, Llesuy S, Cutrín JC, Boveris A (1995) Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med 19:303–310

    Article  PubMed  CAS  Google Scholar 

  • Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen ­species toxicology. Toxicology 153:83–104

    Article  PubMed  Google Scholar 

  • Miller MG, Jollow DJ (1986) Acetaminophen hepatotoxicity: studies on the mechanism of cysteamine protection. Toxicol Appl Pharmacol 83:115–125

    Article  PubMed  CAS  Google Scholar 

  • Misra HP (1985) Adrenochrome assay. In: Greenwald RA (ed) CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL, pp 237–241

    Google Scholar 

  • Moore M, Thor H, Moore G, Nelson SD, Moldeus P, Orrenius S (1985) The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem 260:13035–13040

    PubMed  CAS  Google Scholar 

  • Moss DW, Henderson AR, Kachman JF (1986) Enzymes. In: Tietz NW (ed) Textbook of Clinical Chemistry, W B Saunders, Philadelphia, PA, pp 663–667

    PubMed  CAS  Google Scholar 

  • Nakae D, Yoshiji H, Yamamoto K et al (1990) Influence of timing of administration of liposome-encapsulated superoxide dismutase on its prevention of acetaminophen-induced liver cell necrosis in rats. Acta Pathol Jpn 40:568–573

    PubMed  CAS  Google Scholar 

  • Nelson SD, Bruschi SA (2003) Mechanisms of acetaminophen-induced liver disease. In: Kaplowitz N, DeLeve LD (eds) Drug-Induced Liver Disease. Marcel Decker, New York, NY, pp 287–325

    Google Scholar 

  • Olaleye MT, Rocha BT (2008) Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol 59:319–327

    Article  PubMed  CAS  Google Scholar 

  • Ozaras R, Tahan V, Aydin S, Uzun H, Kaya S, Senturk H (2003) N-Acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol 9:125–128

    PubMed  CAS  Google Scholar 

  • Patten CJ, Thomas PE, Guy RL et al (1993) Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol 6:511–518

    Article  PubMed  CAS  Google Scholar 

  • Polaniak R, Bułdak RJ, Jacheć W (2011) Long-term exposure to acetaminophen is a crucial for activity of selected antioxidative enzymes and level of lipid peroxidation process in rat liver. J Bioequiv Availab 3:182–186

    Article  CAS  Google Scholar 

  • Roušar T, Pařík P, Kučera O, Bartoš M, Červinková Z (2010) Glutathione reductase is inhibited by acetaminophen-glutathione conjugate in vitro. Physiol Res 59:225–232

    PubMed  Google Scholar 

  • Rushmore TH, Pickett CB (1993) Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268:11475–11478

    PubMed  CAS  Google Scholar 

  • Sabina EP, Mathew J, RajappaRamya S et al (2009) Hepatoprotective and antioxidant potential of Spirulina fusiformis on acetaminophen-induced hepatotoxicity in mice. Int J Integr Med 6:1–5

    CAS  Google Scholar 

  • Sathish P, Paramasivan V, Palani V, Sivanesan K (2011) N-Acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats. Eur J Pharmacol 654:181–186

    Article  PubMed  CAS  Google Scholar 

  • Smilkstein MJ, Knapp GL, Kulig KW et al (1988) Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose: analysis of the national multicenter study (1976–85). N Engl J Med 319:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Spielberg SP (1985) Acetaminophen toxicity in lymphocytes heterozygous for glutathione ­synthetase deficiency. Can J Physiol Pharmacol 63:468–471

    Article  PubMed  CAS  Google Scholar 

  • Tirmenstein MA, Nelson SD (1990) Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine ­nucleotides. J Biol Chem 265:3059–3065

    PubMed  CAS  Google Scholar 

  • van de Straat R, de Vries J, Debets AJ, Vermeulen NP (1987) The mechanism of prevention of paracetamol-induced hepatotoxicity by 3,5-dialkyl substitution: the roles of glutathione ­depletion and oxidative stress. Biochem Pharmacol 36:2066–2070

    Google Scholar 

  • Victor VM, Rocha M, De la Fuente M (2003) Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int Immunopharmacol 3:97–106

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Peng RX (1993) Effects of paracetamol on glutathione S-transferase activity in mice. Zhongguo Yao Li Xue Bao 14(Suppl):S41–S44

    PubMed  CAS  Google Scholar 

  • Waters E, Wang JH, Redmond HP, Wu QD, Kay E, Bouchier-Hayes D (2001) Role of taurine in preventing acetaminophen-induced hepatic injury in the rat. Am J Physiol Gastrointest Liver Physiol 280:G1274–G1279

    PubMed  CAS  Google Scholar 

  • Wendel A (1983) Hepatic lipid peroxidation: caused by acute drug intoxication, prevented by liposomal glutathione. Int J Clin Pharmacol Res 3:443–447

    PubMed  CAS  Google Scholar 

  • Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199

    Article  PubMed  CAS  Google Scholar 

  • Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache technik der extrem schnellen abkühlung größerer gewebestücke. Pflügers Arch Gesamte Physiol 270:399–412

    Article  CAS  Google Scholar 

  • Yoshiyuki K (1998) New raw materials and new technologies for cosmetics. (Part I). Development and its application of “sebum antioxidant thiotaurine” for cosmetics. Fragr J 26:9–14

    Google Scholar 

  • Yoshiyuki K, Yoshiki M (2000) Peroxidation in the skin and its prevention. Jpn J Inflamm 20:119–129

    Google Scholar 

  • Zhou W, Freed CR (2005) DJ-1 upregulates glutathione synthesis during oxidative stress and inhibits A53T α-synuclein toxicity. J Biol Chem 280:43150–43158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Acharya, M., Lau-Cam, C.A. (2013). Comparative Evaluation of the Effects of Taurine and Thiotaurine on Alterations of the Cellular Redox Status and Activities of Antioxidant and Glutathione-Related Enzymes by Acetaminophen in the Rat. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 776. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6093-0_20

Download citation

Publish with us

Policies and ethics