Skip to main content

Millikelvin Cooling of an Optically Trapped Microsphere in Vacuum

  • Chapter
  • First Online:
Book cover Fundamental Tests of Physics with Optically Trapped Microspheres

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Chapter 6 presents different approaches to cool the center-of-mass motion of an optically trapped microsphere in vacuum, and the results of 3D optical feedback cooling. We also discuss the trapping lifetime of optically trapped microspheres in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hänsch, A. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  2. A. Ashkin, Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729 (1978)

    Article  ADS  Google Scholar 

  3. D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  4. T.J. Kippenberg, K.J. Vahala, Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  5. A.D. O’Connell et al., Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  6. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, Quantum optomechanics—throwing a glance. J. Opt. Soc. Am. B 27, A189 (2010)

    Article  ADS  Google Scholar 

  7. P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  8. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)

    Article  ADS  Google Scholar 

  9. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  10. S. Gigan et al., Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  11. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  12. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)

    Article  ADS  Google Scholar 

  13. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  14. D.E. Chang et al., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 107, 1005 (2010)

    Article  ADS  Google Scholar 

  15. O. Romero-Isart, M.L. Juan, R. Quidant, J. Ignacio Cirac, Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010)

    Article  ADS  Google Scholar 

  16. T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673 (2010)

    Article  ADS  Google Scholar 

  17. P.F. Barker, M.N. Shneider, Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010)

    Article  ADS  Google Scholar 

  18. S. Singh, G.A. Phelps, D.S. Goldbaum, E.M. Wright, P. Meystre, All-optical optomechanics: an optical spring mirror. Phys. Rev. Lett. 105, 213602 (2010)

    Article  ADS  Google Scholar 

  19. R.J. Schulze, C. Genes, H. Ritsch, Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity. Phys. Rev. A 81, 063820 (2010)

    Article  ADS  Google Scholar 

  20. P.F. Barker, Doppler cooling a microsphere. Phys. Rev. Lett. 105, 073002 (2010)

    Article  ADS  Google Scholar 

  21. O. Romero-Isart, A.C. Pflanzer, M.L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, J.I. Cirac, Optically levitating dielectrics in the quantum regime: theory and protocools. Phys. Rev. A 83, 013803 (2011)

    Article  ADS  Google Scholar 

  22. Z.-Q. Yin, T. Li, M. Feng, Three dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A 83, 013816 (2011)

    Article  ADS  Google Scholar 

  23. O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J. I. Cirac. Large quantum superpositions and interference of massive nano-objects. http://arxiv.org/abs/1103.4081 (2011)

  24. A. Ashkin, J.M. Dziedzic, Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333 (1976)

    Article  ADS  Google Scholar 

  25. A. Ashkin, J.M. Dziedzic, Feedback stabilization of optically levitated particles. Appl. Phys. Lett. 30, 202 (1977)

    Article  ADS  Google Scholar 

  26. Y. Roichman, B. Sun, A. Stolarski, D.G. Grier, Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett. 101, 128301 (2008)

    Article  ADS  Google Scholar 

  27. S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  28. A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003)

    Article  ADS  Google Scholar 

  29. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  30. S.A. Beresnev, V.G. Chernyak, G.A. Fomyagin, Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization. J. Fluid Mech. 219, 405 (1990)

    Article  ADS  MATH  Google Scholar 

  31. L. Friedrich, A. Rohrbach, Improved interferometric tracking of trapped particles using two frequency-detuned beams. Opt. Lett. 35, 1920 (2010)

    Article  ADS  Google Scholar 

  32. K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594 (2004)

    Article  ADS  Google Scholar 

  33. T.P. Meyrath, Experiments with Bose-Einstein condensation in an optical box. Ph. D dissertation, The University of Texas at Austin, 2005

    Google Scholar 

  34. A.J. Trevitt, P.J. Wearne, E.J. Bieske, Calibration of a quadrupole ion trap for particle mass spectrometry. Int. J. Mass Spectrom. 262, 241 (2007)

    Article  ADS  Google Scholar 

  35. A.A. Sickafoose, J.E. Colwell, M. Horányi, S. Robertson, Photoelectric changring of dust particles in vacuum. Phys. Rev. Lett. 84, 6034 (2000)

    Article  ADS  Google Scholar 

  36. R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, A two-dimensional lattice ion trap for quantum simulation. J. Appl. Phys. 105, 013114 (2009)

    Article  ADS  Google Scholar 

  37. T. Li, S. Kheifets, and M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. (2011). doi:10.1038/nphys1952

  38. D.M. Hoffman, B. Singh, J. H. Thomas III., Handbook of vacuum science and technology (Academic Press, London, 1998), p. 237

    Google Scholar 

  39. K. Nagayama et al., Ultra low loss (0.1484 dB/km) pure silica core fiber. Sei Tech. Rev. 57, 3 (2004)

    Google Scholar 

  40. M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko, Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453 (1996)

    Article  ADS  Google Scholar 

  41. B.J. Skutnik, B. Foley, K.B. Moran, High numerical aperture silica core fibers Prog. Biomed Opt. imaging, SPIE (2004)

    Google Scholar 

  42. A. van Blaaderen, J. van Geest, A. Vrij, Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J. Col. Inter. Sci. 154, 481 (1992)

    Article  Google Scholar 

  43. G. De, B. Karmakar, D. Ganguli, Hydrolysis-condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J. Mater. Chem. 10, 2289–2293 (2000)

    Article  Google Scholar 

  44. J.F. Lübben, C. Mund, B. Schrader, R. Zellner, Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy. J. Mol. Structure 480–481, 311–316 (1999)

    Article  Google Scholar 

  45. A.D. McLachlan, F.P. Meyer, Temperature dependence of the extinction coefficient of fused silica for CO\(_2\) laser wavelengths. Appl. Opt. 26, 1728 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongcang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, T. (2013). Millikelvin Cooling of an Optically Trapped Microsphere in Vacuum. In: Fundamental Tests of Physics with Optically Trapped Microspheres. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6031-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6031-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6030-5

  • Online ISBN: 978-1-4614-6031-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics