Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1085 Accesses

Abstract

Chapter 1 introduces the concepts of the macroscopic quantum mechanics and the instantaneous velocity of Brownian motion. It summarizes the contributions of this thesis in this two fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Einstein’s paper, \(\theta \) was defined as the time in which the velocity falls to a tenth of its original value. \(\theta \,=\,2.30 \, \tau _p\), where \(\tau _p\) is the momentum relaxation time of the particle. Einstein mistakenly obtained \(\theta \) = 330 ns for a 50-nm-diameter platinum nanosphere in water. The correct value should be \(\theta \) = 6.8 ns for his example.

References

  1. S.W. Hawking, W. Israel (eds.), General Relativity; an Einstein Centenary Survey (Cambridge University Press, Cambridge, 1979)

    MATH  Google Scholar 

  2. R. Penrose, On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  4. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Christian, Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403 (2005)

    Article  ADS  Google Scholar 

  6. J. van Wezel, T. Oosterkamp, J. Zaanen, Towards an experimental test of gravity-induced quantum state reduction. Phil. Mag. 88, 1005 (2008)

    Article  ADS  Google Scholar 

  7. T.J. Kippenberg, K.J. Vahala, Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  8. F. Marquadt, S.M. Girvin, Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  9. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, Quantum optomechanics—throwing a glance. J. Opt. Soc. Am. B 27, A189 (2010)

    Article  ADS  Google Scholar 

  10. B. Abbott et al., Observation of a kilogram-scale oscillator near its quantum ground state. New. J. Phys. 11, 073032 (2009)

    Article  ADS  Google Scholar 

  11. Y.S. Park, H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489 (2009)

    Article  ADS  Google Scholar 

  12. S. Gröblacher et al., Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485 (2009)

    Article  ADS  Google Scholar 

  13. A.D. O’Connell et al., Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  14. J. D. Teufel et al. Sideband cooling micromechanical motion to the quantum ground state. http://arxiv.org/abs/1103.2144. (2011)

  15. T. Li, S. Kheifets, and M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. (2011). doi: 10.1038/nphys1952

    Google Scholar 

  16. O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J. I. Cirac. Large quantum superpositions and interference of massive nano-objects. http://arxiv.org/abs/1103.4081 (2011)

  17. D.E. Chang et al., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 107, 1005 (2010)

    Article  ADS  Google Scholar 

  18. O. Romero-Isart, M.L. Juan, R. Quidant, J. Ignacio Cirac, Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010)

    Article  ADS  Google Scholar 

  19. Z.-Q. Yin, T. Li, M. Feng, Three dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A 83, 013816 (2011)

    Article  ADS  Google Scholar 

  20. R. Brown, A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles containded in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 4, 161 (1828)

    Google Scholar 

  21. F.M. Exner, Notiz zu Brown’s molecularbewegung. Ann. d. Phys. 2, 843 (1900)

    Article  ADS  Google Scholar 

  22. M. Kerker, Brownian movement and molecular reality prior to 1900. J. Chem. Educ. 51, 764 (1974)

    Article  Google Scholar 

  23. A. Einstein, Ann. d. Phys. 17, 549 (1905)

    Article  ADS  MATH  Google Scholar 

  24. A. Einstein, Theoretische bemerkungen über die Brownsche bewegung. Zeit. f. Elektrochemie 13, 41 (1907)

    Article  Google Scholar 

  25. A. Einstein, Investigations on the theory of the Brownian movement, R. Fürth, Ed., A. D. Cowper, Transl. (Methuen, London, 1926), pp. 63–67

    Google Scholar 

  26. B. Lukić et al., Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005)

    Article  ADS  Google Scholar 

  27. Y. Han et al., Brownian motion of an ellipsoid. Science 314, 626 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. I. Chavez, R. Huang, K. Henderson, E.-L. Florin, M.G. Raizen, Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008)

    Article  ADS  Google Scholar 

  29. R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. (2011). doi:10.1038/nphys1953

    Google Scholar 

  30. P.D. Fedele, Y.W. Kim, Direct measurement of the velocity autocorrelation function for a Brownian test particle. Phys. Rev. Lett. 44, 691 (1980)

    Article  ADS  Google Scholar 

  31. J. Blum et al., Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett. 97, 230601 (2006)

    Article  ADS  Google Scholar 

  32. D.R. Burnham, P.J. Reece, D. McGloin, Parameter exploration of optically trapped liquid aerosols. Phys. Rev. E 82, 051123 (2010)

    Article  ADS  Google Scholar 

  33. T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673 (2010)

    Article  ADS  Google Scholar 

  34. R. Kubo, Brownian motion and nonequilibrium statistical mechanics. Science 233, 330 (1986)

    Article  ADS  Google Scholar 

  35. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  36. R. Dean Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276, 917 (1997)

    Article  Google Scholar 

  37. P. Hänggi, F. Marchesoni, Introduction: 100 years of Brownian motion. Chaos 15, 026101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongcang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, T. (2013). Introduction. In: Fundamental Tests of Physics with Optically Trapped Microspheres. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6031-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6031-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6030-5

  • Online ISBN: 978-1-4614-6031-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics