Skip to main content

Early Lung Cancer: Methods for Detection

  • Chapter
  • First Online:
  • 1930 Accesses

Abstract

Recent advances in technology over the past two decades have transformed the flexible bronchoscopy into an advanced diagnostic modality through the introduction of endobronchial ultrasound, allowing advanced assessment of the airway as well as the mediastinum and peripheral lung nodules. Advanced airway assessment techniques have opened an avenue for early endobronchial malignancy detection and surveillance. Autofluorescence bronchoscopy (AFB), narrow band imaging (NBI), and high-magnification bronchovideoscope are some of the advanced bronchoscopic imaging techniques capable of detecting preinvasive lesions currently available in clinical practice. The radial probe endobronchial ultrasound (EBUS) allows a more precise evaluation of newly detected preinvasive lesions within the airway. These advancements allow visualization of the endobronchial structures within the superficial mucosal layer with ability to differentiate between premalignant and malignant lesions, utilizing differential patterns of normal and pathological tissue autofluorescence or vasculature. This chapter will review the advanced bronchoscopic mucosal imaging technologies for detection of early lung cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFB:

Autofluorescence bronchoscopy

AFI:

Autofluorescence imaging

ASD:

Angiogenic squamous dysplasia

CIS:

Carcinoma in situ

EBUS:

Endobronchial ultrasound

HMB:

High-magnification bronchovideoscope

NBI:

Narrow band imaging

NADH:

Nicotinamide adenine dinucleotide hydrogen

OCT:

Optical coherence tomography

PDT:

Photodynamic therapy

SCC:

Squamous cell carcinoma

WLB:

White light bronchoscopy

References

  1. Horner MJ, Ries LAG, Krapcho M, et al., editors. SEER cancer statistics review, 1975–2006. Bethesda, MD: National Cancer Institute. Available from http://seer.cancer.gov/csr/1975_2006/. Based on November 2008 SEER data submission, posted on the SEER website, 2009. Accessed 23 Aug 2011.

  2. Ries L, Eisner M, Kosary C, editors. Cancer statistics review, 1975–2002. Bethesda, MD: National Cancer Institute; 2005.

    Google Scholar 

  3. The National Lung Screening Trial Research Team. Reduced lung cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  Google Scholar 

  4. Yasufuku K. Early diagnosis of lung cancer. In: Mehta A, editor. Clin Chest Med (Interventional pulmonology). 2010; 31(1): 40–7.

    Google Scholar 

  5. Niklinski J, Niklinski W, Chyczewskis L, et al. Molecular genetic abnormalities in premalignant lung lesions: biological and clinical implications. Eur J Cancer Prev. 2001;10:213–26.

    Article  PubMed  CAS  Google Scholar 

  6. Thiberville L, Payne P, Vielkinds J, et al. Evidence of cumulative gene losses with progression of the premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res. 1995;155:5133–9.

    Google Scholar 

  7. Band PR, Feldstein M, Saccomanno G. Reversibility of bronchial marked atypia: implication for chemoprevention. Cancer Detect Prev. 1986;9:157–60.

    PubMed  CAS  Google Scholar 

  8. Venmans BJ, van Boxem TJ, Smith EF, et al. Outcome of bronchial carcinoma in situ. Chest. 2000;117:1572–6.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda N, Hayashi A, Iwasaki K, et al. Comprehensive diagnostic bronchoscopy of central type early stage lung cancer. Lung Cancer. 2007;56:295–302.

    Article  PubMed  Google Scholar 

  10. Lam S, Kennedy T, Unger M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998;113:696–702.

    Article  PubMed  CAS  Google Scholar 

  11. Shibuya K, Fujiwara T, Yasufuku K, et al. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system. Lung Cancer. 2011;72:184–90.

    Article  PubMed  Google Scholar 

  12. Keith RL, Miller YE, Gemmill RM, et al. Angiogrnic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin Cancer Res. 2000;6:1616–25.

    PubMed  CAS  Google Scholar 

  13. Interventional bronchoscopy. Progress in respiratory research, vol. 30. Switzerland: Springer Kaarger; 2000. p. 243.

    Google Scholar 

  14. Colt H, Murgu S. Interventional bronchoscopy form bench to bedside: new techniques for early lung cancer detection. In: Mehta A, editor. Clin Chest Med (Interventional pulmonology). 2010; 31(1): 29–37.

    Google Scholar 

  15. Chiyo M, Shibuya K, Hoshino H, et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer. 2005;48:307–13.

    Article  PubMed  Google Scholar 

  16. Sun J, Garfield D, Lam B. The role of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in diagnosis of intraepithelial neoplasia and invasive lung cancer. J Thorac Oncol. 2011;6:1336–44.

    Article  PubMed  Google Scholar 

  17. Van Rens M, Schramel F, Elbers J, et al. The clinical value of lung imaging autofluorescence endoscope for detecting synchronous lung cancer. Lung Cancer. 2001;32:13–8.

    Article  PubMed  Google Scholar 

  18. Kusunoki Y, Imamura F, Uda H, et al. Early detection of lung cancer with laser-induced fluorescence endoscopy and spectrofluorometry. Chest. 2000;118:1776–82.

    Article  PubMed  CAS  Google Scholar 

  19. Sato M, Sakurada A, Sagawa M, et al. Diagnostic results before and after induction of autofluorescence bronchoscopy in patients suspected of having lung cancer detected by sputum cytology in lung cancer mass screening. Lung Cancer. 2001;32:247–53.

    Article  PubMed  CAS  Google Scholar 

  20. Pierard P, Martin B, Verdebout J, et al. Fluorescence bronchoscopy in high-risk patients – a comparison of LIFE and pentax systems. J Bronchol. 2001;8:254–9.

    Article  Google Scholar 

  21. Chhajed PN, Shibuya K, Hoshino H, et al. A comparison of video and autofluorescence bronchoscopy in patients at high risk of lung cancer. Eur Respir J. 2005;25:951–5.

    Article  PubMed  CAS  Google Scholar 

  22. Weigel TL, Kosco PJ, Dacic S, et al. Postoperative fluorescence bronchoscopic surveillance in non- small cell lung cancer patients. Ann Thorac Surg. 2001;71:967–70.

    Article  PubMed  CAS  Google Scholar 

  23. Shibuya K, Fujisawa T, Hoshino H, et al. Fluorescence bronchoscopy in detection of preinvasive bronchial lesions in patients with sputum cytology suspicious or positive for malignancy. Lung Cancer. 2001;32:19–25.

    Article  PubMed  CAS  Google Scholar 

  24. Haussinger K, Becker H, Stanzel F, et al. Autofluorescence bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial. Thorax. 2005;60:496–503.

    Article  PubMed  CAS  Google Scholar 

  25. Hirsch FR, Prindiville SA, Miller YE, et al. Fluorescence versus white light bronchoscopy for detection of preneoplastic lesions: a randomised study. J Natl Cancer Inst. 2001;93:1385–91.

    Article  PubMed  CAS  Google Scholar 

  26. Ernst A, Simoff MJ, Mathur PN, et al. D-light autofluorescence in the detection of premalignant airway changes: a multicenter trial. J Bronchol. 2005;12:133–8.

    Article  Google Scholar 

  27. Edell E, Lam S, Pass H, et al. Detection and localization of intraepithelial neoplasia and invasive carcinoma using fluorescence-reflectance bronchoscopy – an international multicenter clinical trial. J Thorac Oncol. 2009;4:49–54.

    PubMed  Google Scholar 

  28. Short MA, Lam S, McWilliams AM, et al. Using laser Raman spectroscopy to reduce false positive of autofluorescence bronchoscopy. A pilot study. J Thorac Oncol. 2011;6:1206–14.

    Article  PubMed  Google Scholar 

  29. Tu AT. Raman spectroscopy in biology: principles and applications. New York, NY: Wiley; 1982.

    Google Scholar 

  30. Weigel TL, Yousem S, Dacic S, et al. Fluorescence bornchoscopic surveillance after curative surgical resection for non-small-cell lung cancer. Ann Surg Oncol. 2000;7:176–80.

    Article  PubMed  CAS  Google Scholar 

  31. Sutedja TG, Codrington H, Risse EK, et al. Autofluorescence bronchoscopy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest. 2001;120:1327–32.

    Article  PubMed  CAS  Google Scholar 

  32. Zaric B, Becker HD, Perin B, et al. Autofluorescence imaging videobronchoscopy improves assessment of tumor margins and affects therapeutic strategy in central lung cancer. Jpn J Clin Oncol. 2010;40:139–45.

    Article  PubMed  Google Scholar 

  33. Furukawa K, Ikeda N, Miura T, et al. Is autofluorescence bronchoscopy needed to diagnose early bronchogenic carcinoma? Pro: autofluorescence bronchoscopy. J Bronchol. 2003;10:64–9.

    Article  Google Scholar 

  34. Pierard P, Vermylen P, Bosschaerts T, et al. Synchronous roentgenographically occult lung carcinoma in patients with resectable primary lung cancer. Chest. 2000;7:176–80.

    Google Scholar 

  35. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–77.

    Article  PubMed  Google Scholar 

  36. Gono K, Igarashi M, Obi T, Yamaguchi M, Ohyama N. Multiple-discriminanat analysis for white light-scattering spectroscopy and imaging of two layered tissue phantoms. Opt Lett. 2004;29:971–3.

    Article  PubMed  Google Scholar 

  37. Tajiri H, Niwa H. Proposal for a consensus terminology in endoscopy: how should different endoscopic imaging techniques be grouped and defined? Endoscopy. 2008;40:775–8.

    Article  PubMed  CAS  Google Scholar 

  38. Kaltenbach T, Sano Y, Friedland S, Soetikno R. American Gastroenterological Association (AGA) Institute technology assessment on image-enhanced endoscopy. Gastroenterology. 2008;134:327–40.

    Article  PubMed  Google Scholar 

  39. Hirsch FR, Franklin WA, Gazdar AF, Bunn Jr PA. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7:5–22.

    PubMed  CAS  Google Scholar 

  40. Shibuya K, Nakajima T, Fujiwara T, et al. Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung Cancer. 2010;69:194–202.

    Article  PubMed  Google Scholar 

  41. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tomorigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  42. Hanahan D, Inoue H, Nagai K, Kawano T, et al. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  43. Herth FJ, Eberhardt R, Anantham D, et al. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J Thorac Oncol. 2009;4:1060–5.

    Article  PubMed  Google Scholar 

  44. Zaric B, Perlin B, Becker H, et al. Combination of narrow band imaging (NBI) and autofluorescnece imaging (AFI) videobronchoscopy in endoscopic assessment of lung cancer extention. Med Oncol. 2012;29(3):1638–42 (Published online 09 August 2011).

    Article  PubMed  Google Scholar 

  45. Risse EK, Voojis GP, van’t Hoff MA. Diagnostic significance of ‘severe dysplasia’ in sputum cytology. Acta Cytol. 1988;32:629–34.

    PubMed  CAS  Google Scholar 

  46. Sawyer RW, Hammond WG, Teplitz RL, et al. Regression of bronchial epithelial cancer in hamsters. Ann Thorac Surg. 1993;56:74–8.

    Article  PubMed  CAS  Google Scholar 

  47. Breuer RH, Pasic A, Smith EF, et al. The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res. 2005;11:537–43.

    PubMed  CAS  Google Scholar 

  48. Vincent B, Fraig M, Silvestri G. A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest. 2007;131:1794–9.

    Article  PubMed  Google Scholar 

  49. Shibuya K, Hoshino H, Chiyo M, et al. Subepithelial vascular patterns in bronchial dysplasias using a high magnification bronchovideoscope. Thorax. 2002;57:902–7.

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka H, Yamada G, Sakai T, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168:1495–9.

    Article  PubMed  Google Scholar 

  51. Kumaji Y, Inoue H, Nagai H, et al. Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma. Endoscopy. 2002;34:369–75.

    Article  Google Scholar 

  52. Shibuya K, Nakajima T, Yasufuku K, et al. Narrow band imaging with high resolution bronchovideoscopy: a new approach to visualize angiogenesis in squamous cell carcinoma of the lung. Eur Respir J. 2006;28 Suppl 50:601s.

    Google Scholar 

  53. Yasufuku K. Current clinical applications of endobronchial ultrasound. Expert Rev Respir Med. 2010;4:491–8.

    Article  PubMed  Google Scholar 

  54. Kurimoto N, Murayama M, Yoshioka S, Nishisaka T. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion. Chest. 1999;115:1500–6.

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka F, Muro K, Yamasaki S, et al. Evaluation of tracheo-bronchial wall invasion using transbronchial ultrasonography (TBUS). Eur J Cardiothorac Surg. 2000;17:570–4.

    Article  PubMed  CAS  Google Scholar 

  56. Herth FJ, Becker HD. EBUS for early lung cancer detection. J Bronchol. 2003;10:249.

    Article  Google Scholar 

  57. Miyazu Y, Miyazawa T, Kurimoto N, et al. Endobronchial ultrasonography in the assessment of centrally located early-stage lung cancer before photodynamic therapy. Am J Respir Crit Care Med. 2002;165:832–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yasufuku M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yasufuku, K. (2013). Early Lung Cancer: Methods for Detection. In: Díaz-Jimenez, J., Rodriguez, A. (eds) Interventions in Pulmonary Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6009-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6009-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6008-4

  • Online ISBN: 978-1-4614-6009-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics