Skip to main content

Simulation in Neurosurgery and Neurosurgical Procedures

  • Chapter
  • First Online:
Book cover The Comprehensive Textbook of Healthcare Simulation

Abstract

With recent advancement in medical technology, surgical training has evolved as well. The classical teaching is being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach, rehearse, and practice advanced techniques before attempting them on patients. Simulation training available in the neurosurgical field includes the simple straightforward principle of using real instruments and video equipment to manipulate simulated “tissue” in a box trainer, to more advanced computer-based virtual reality (VR) simulators. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation, to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheter insertion and endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg. 2004;100(1):139–45.

    Article  PubMed  Google Scholar 

  2. Kimura T, Morita A, Nishimura K, et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009;65(4):719–25; discussion 725–26.

    Article  PubMed  Google Scholar 

  3. Luciano C, Banerjee P, Lemole Jr GM, Charbel F. Second generation haptic ventriculostomy simulator using the ImmersiveTouch system. Stud Health Technol Inform. 2006;119:343–8.

    PubMed  Google Scholar 

  4. Larsen O, Haase J, Hansen KV, Brix L, Pedersen CF. Training brain retraction in a virtual reality environment. Stud Health Technol Inform. 2003;94:174–80.

    PubMed  Google Scholar 

  5. Delorme S, Laroche D, Diraddo R, Del Maestro R. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery. 2012;71(1 Suppl Operative):32–42.

    PubMed  Google Scholar 

  6. Wang P, Becker AA, Jones IA, et al. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Comput Methods Programs Biomed. 2006;84(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ferroli P, Tringali G, Acerbi F, Aquino D, Franzini A, Broggi G. Brain surgery in a stereoscopic virtual reality environment: a single institution’s experience with 100 cases. Neurosurgery. 2010;67(3 Suppl Operative):ons79–84; discussion ons84.

    PubMed  Google Scholar 

  8. Aggarwal R, Hance J, Darzi A. The development of a surgical education program. Cir Esp. 2005;77(1):1–2.

    Article  PubMed  Google Scholar 

  9. Laguna MP, de Reijke TM, Wijkstra H, de la Rosette J. Training in laparoscopic urology. Curr Opin Urol. 2006;16(2):65–70.

    Article  PubMed  Google Scholar 

  10. Lemole Jr GM, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery. 2007;61(1):142–8; discussion 148–9.

    Article  PubMed  Google Scholar 

  11. Brown N, Natsupakpong S, Johannsen S, et al. Virtual environment-based training simulator for endoscopic third ventriculostomy. Stud Health Technol Inform. 2006;119:73–5.

    PubMed  Google Scholar 

  12. Çakmak H, Maaß H, Trantakis G, Strauß G, Nowatius E, Kühnapfel U. Haptic ventriculostomy simulation in a grid environment. Comp Anim Virtual Worlds. 2009;20:25–38.

    Article  Google Scholar 

  13. Lemole M, Banerjee PP, Luciano C, et al. Virtual ventriculostomy with ‘shifted ventricle’: neurosurgery resident surgical skill assessment using a high-fidelity haptic/graphic virtual reality simulator Haptic ventriculostomy simulation in a grid environment. Neurol Res. 2009;31(4):430–1.

    Article  PubMed  Google Scholar 

  14. Banerjee PP, Luciano CJ, Lemole Jr GM, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg. 2007;107(3):515–21.

    Article  PubMed  Google Scholar 

  15. Kockro RA, Hwang PY. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery. 2009;64(5 Suppl 2):216–29; discussion 229–30.

    PubMed  Google Scholar 

  16. Wolfsberger S, Neubauer A, Buhler K, et al. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery. Neurosurgery. 2006;59(5):1001–9; discussion 1009–10.

    PubMed  Google Scholar 

  17. Hinckley K, Pausch R, Downs JH, et al. The props-based interface for neurosurgical visualization two-handed spatial interface tools for neurosurgical planning. Stud Health Technol Inform. 1997;39(7):552–62.

    CAS  PubMed  Google Scholar 

  18. Goble J, Hinckley K, Snell J, Pausch R, Kassell N. Two-handed spatial interface tools for neurosurgical planning. IEEE Comput. 1995;28:20–6.

    Article  Google Scholar 

  19. Stoakley R, Conway M, Pausch R, Hinckley K, Kassell N. Virtual reality on a WIM: interactive worlds in miniature. Paper presented at: CHI’95, Denver; 1995.

    Google Scholar 

  20. Integra. For the neurosurgeon. http://www.integralife.com/Neurosurgeon/Neurosurgeon-Product-List.aspx?ProductLine=8&ProductLineName=Stereotaxy. Accessed 17 Mar 2012.

  21. Adams CM, Wilson TD. Virtual cerebral ventricular system: an MR-based three-dimensional computer model. Anat Sci Educ. 2011;4(6):340–7.

    Article  PubMed  Google Scholar 

  22. Poston T. The Virtual Workbench: Dextrous VR. Paper presented at: ACM VRST’94 – Reality Software and Technology, Singapore; 1994.

    Google Scholar 

  23. Bracco. Dextroscope – 3D interactivity. http://dextroscope.com/interactivity.html. Accessed 17 Mar 2012.

  24. Kockro RA, Stadie A, Schwandt E, et al. A collaborative virtual reality environment for neurosurgical planning and training. Neurosurgery. 2007;61(5 Suppl 2):379–91; discussion 391.

    Article  PubMed  Google Scholar 

  25. Kockro RA, Serra L, Tseng-Tsai Y, et al. Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery. 2000;46(1):118–35; discussion 135–7.

    Article  CAS  PubMed  Google Scholar 

  26. Stadie AT, Kockro RA, Reisch R, et al. Virtual reality system for planning minimally invasive neurosurgery. Technical note. J Neurosurg. 2008;108(2):382–94.

    Article  PubMed  Google Scholar 

  27. Yudkowsky R, Luciano CJ, Banerjee PP, et al. Ventriculostomy practice on a library of virtual brains using a VR/haptic simulator improves simulator and surgical outcomes. Paper presented at: 12th annual international meeting on simulation in healthcare (IMSH), San Diego; 2012.

    Google Scholar 

  28. Chui CK, Teo J, Wang Z, et al. Integrative haptic and visual interaction for simulation of PMMA injection during vertebroplasty. Stud Health Technol Inform. 2006;119:96–8.

    PubMed  Google Scholar 

  29. Luciano CJ, Banerjee PP, Bellotte B, et al. Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery. 2011;69(1 Suppl Operative):ons14–9; discussion ons19.

    PubMed Central  PubMed  Google Scholar 

  30. SimSuite. NEUROSTIMULATION. http://www.medsimulation.com/NeurostimulationSimulator.asp. Accessed 31 Mar 2012.

  31. Schulze F, Buhler K, Neubauer A, Kanitsar A, Holton L, Wolfsberger S. Intra-operative virtual endoscopy for image guided endonasal transsphenoidal pituitary surgery. Int J Comput Assist Radiol Surg. 2010;5(2):143–54.

    Article  PubMed  Google Scholar 

  32. Burtscher J, Dessl A, Maurer H, Seiwald M, Felber S. Virtual neuroendoscopy, a comparative magnetic resonance and anatomical study. Minim Invasive Neurosurg. 1999;42(3):113–7.

    Article  CAS  PubMed  Google Scholar 

  33. Buxton N, Cartmill M. Neuroendoscopy combined with frameless neuronavigation. Br J Neurosurg. 2000;14(6):600–1.

    Article  CAS  PubMed  Google Scholar 

  34. Dumay AC, Jense GJ, Poston T, et al. Endoscopic surgery simulation in a virtual environment the Virtual Workbench: Dextrous VR virtual reality on a WIM: interactive worlds in miniature. Comput Biol Med. 1995;25(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  35. Devarajan V, Scott D, Jones D, et al. Bimanual haptic workstation for laparoscopic surgery simulation. Stud Health Technol Inform. 2001;81:126–8.

    CAS  PubMed  Google Scholar 

  36. McCaslin AF, Aoun SG, Batjer HH, Bendok BR. Enhancing the utility of surgical simulation: from proficiency to automaticity. World Neurosurg. 2011;76(6):482–4.

    Article  PubMed  Google Scholar 

  37. Simbionix. ANGIO mentor. http://simbionix.com/simulators/angio-mentor/library-of-modules/cerebral-intervention-module/. Accessed 31 Mar 2012.

  38. Mentice. Neuro intervention. http://www.mentice.com/default.asp?viewset=1&on='Procedures'&id=&initid=98&heading=Procedures&mainpage=templates/05.asp?sida=84. Accessed 31 Mar 2012.

  39. Mentice. Carotid intervention. http://www.mentice.com/default.asp?viewset=1&on='Procedures'&id=&initid=98&heading=Procedures&mainpage=templates/05.asp?sida=84. Accessed 31 Mar 2012.

  40. SimSuite. SIMANTHA. http://www.medsimulation.com/Simantha.asp. Accessed 31 Mar 2012.

  41. Tsang JS, Naughton PA, Leong S, Hill AD, Kelly CJ, Leahy AL. Virtual reality simulation in endovascular surgical training. Surgeon. 2008;6(4):214–20.

    Article  CAS  PubMed  Google Scholar 

  42. Van Herzeele I, Aggarwal R, Choong A, Brightwell R, Vermassen FE, Cheshire NJ. Virtual reality simulation objectively differentiates level of carotid stent experience in experienced interventionalists. J Vasc Surg. 2007;46(5):855–63.

    Article  PubMed  Google Scholar 

  43. Patel AD, Gallagher AG, Nicholson WJ, Cates CU. Learning curves and reliability measures for virtual reality simulation in the performance assessment of carotid angiography. J Am Coll Cardiol. 2006;47(9):1796–802.

    Article  PubMed  Google Scholar 

  44. Dayal R, Faries PL, Lin SC, et al. Computer simulation as a component of catheter-based training. J Vasc Surg. 2004;40(6):1112–7.

    Article  PubMed  Google Scholar 

  45. Dawson DL. Training in carotid artery stenting: do carotid simulation systems really help? Vascular. 2006;14(5):256–63.

    Article  PubMed  Google Scholar 

  46. Jason T et al. The utility of endovascular simulation to improve technical performance and stimulate continued interest of preclinical medical students in vascular surgery. J Surg Educ. 2009;66(6):367–73.

    Article  Google Scholar 

  47. Aggarwal R, Black SA, Hance JR, Darzi A, Cheshire NJ. Virtual reality simulation training can improve inexperienced surgeons’ endovascular skills. Eur J Vasc Endovasc Surg. 2006;31(6):588–93.

    Article  CAS  PubMed  Google Scholar 

  48. Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg. 2006;244(3):343–52.

    PubMed  Google Scholar 

  49. Aggarwal R, Ward J, Balasundaram I, Sains P, Athanasiou T, Darzi A. Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery. Ann Surg. 2007;246(5):771–9.

    Article  PubMed  Google Scholar 

  50. Gurusamy K, Aggarwal R, Palanivelu L, Davidson BR. Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. Br J Surg. 2008;95(9):1088–97.

    Article  CAS  PubMed  Google Scholar 

  51. Jakimowicz JJ, Cuschieri A. Time for evidence-based minimal access surgery training – simulate or sink. Surg Endosc. 2005;19(12):1521–2.

    Article  CAS  PubMed  Google Scholar 

  52. Thijssen AS, Schijven MP. Contemporary virtual reality laparoscopy simulators: quicksand or solid grounds for assessing surgical trainees? Am J Surg. 2010;199(4):529–41.

    Article  PubMed  Google Scholar 

  53. Dawson DL, Meyer J, Lee ES, Pevec WC. Training with simulation improves residents’ endovascular procedure skills. J Vasc Surg. 2007;45(1):149–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alaraj MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alaraj, A., Tobin, M.K., Birk, D.M., Charbel, F.T. (2013). Simulation in Neurosurgery and Neurosurgical Procedures. In: Levine, A.I., DeMaria, S., Schwartz, A.D., Sim, A.J. (eds) The Comprehensive Textbook of Healthcare Simulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5993-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5993-4_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5992-7

  • Online ISBN: 978-1-4614-5993-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics