Skip to main content

Remodeling of Potassium Channels in Cardiac Hypertrophy

  • Chapter
  • First Online:
  • 1941 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

The potassium channel is a major target of remodeling in cardiac ­hypertrophy. To maintain physiological cardiac function in the face of increased workloads, hypertrophied cardiac myocytes undergo downregulation of K+ channels that results in a prolongation of action potential duration (APD) and upregulation of Ca2+ entry channels. Increased intracellular calcium in cardiac hypertrophy activates calcineurin/nuclear factor of activated T cell pathway to permit remodeling of the K+ channels, resulting in a positive feedback between the K+ channel remodeling and alteration of Ca2+ handling. Although the Ito channel is the major target of the K+ channel remodeling in hypertrophied cardiomyocytes, alteration of other K+ channels and/or K+ channel regulators plays an important role in the remodeling and arrhythmogenicity. In this chapter, we list types of K+ channels and their mRNA that undergo remodeling in cardiac hypertrophy and discuss molecular mechanisms of the remodeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Furukawa T, Kurokawa J (2006) Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 41:753–761

    Article  PubMed  CAS  Google Scholar 

  2. Tomaselli GF, Marban E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270–283

    Article  PubMed  CAS  Google Scholar 

  3. Wickenden AD, Kaprielian R, Parker TG et al (1997) Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle. J Physiol 504(Pt 2):271–286

    Article  PubMed  CAS  Google Scholar 

  4. Furukawa T, Bassett AL, Furukawa N et al (1993) The ionic mechanism of reperfusion-induced early after depolarizations in feline left ventricular hypertrophy. J Clin Invest 91:1521–1531

    Article  PubMed  CAS  Google Scholar 

  5. Gillis AM, Geonzon RA, Mathison HJ et al (1998) The effects of barium, dofetilide and 4-aminopyridine (4-AP) on ventricular repolarization in normal and hypertrophied rabbit heart. J Pharmacol Exp Ther 285:262–270

    PubMed  CAS  Google Scholar 

  6. Gomez AM, Benitah JP, Henzel D et al (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086

    PubMed  CAS  Google Scholar 

  7. Kleiman RB, Houser SR (1989) Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 256:H1450–H1461

    PubMed  CAS  Google Scholar 

  8. Lee JK, Kodama I, Honjo H et al (1997) Stage-dependent changes in membrane currents in rats with monocrotaline-induced right ventricular hypertrophy. Am J Physiol 272:H2833–H2842

    PubMed  CAS  Google Scholar 

  9. Lue WM, Boyden PA (1992) Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 85:1175–1188

    Article  PubMed  CAS  Google Scholar 

  10. Potreau D, Gomez JP, Fares N (1995) Depressed transient outward current in single hypertrophied cardiomyocytes isolated from the right ventricle of ferret heart. Cardiovasc Res 30:440–448

    PubMed  CAS  Google Scholar 

  11. Ryder KO, Bryant SM, Hart G (1993) Membrane current changes in left ventricular ­myocytes isolated from guinea pigs after abdominal aortic coarctation. Cardiovasc Res 27:1278–1287

    Article  PubMed  CAS  Google Scholar 

  12. Tomita F, Bassett AL, Myerburg RJ, Kimura S (1994) Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res 75:296–303

    Article  PubMed  CAS  Google Scholar 

  13. Volk T, Nguyen TH, Schultz JH et al (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530:443–455

    Article  PubMed  CAS  Google Scholar 

  14. Cerbai E, Barbieri M, Li Q, Mugelli A (1994) Ionic basis of action potential prolongation of hypertrophied cardiac myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 28:1180–1187

    Article  PubMed  CAS  Google Scholar 

  15. Coulombe A, Momtaz A, Richer P et al (1994) Reduction of calcium-independent transient outward potassium current density in DOCA salt hypertrophied rat ventricular myocytes. Pflugers Arch 427:47–55

    Article  PubMed  CAS  Google Scholar 

  16. Li Q, Keung EC (1994) Effects of myocardial hypertrophy on transient outward current. Am J Physiol 266:H1738–H1745

    PubMed  CAS  Google Scholar 

  17. Momtaz A, Coulombe A, Richer P et al (1996) Action potential and plateau ionic currents in moderately and severely DOCA-salt hypertrophied rat hearts. J Mol Cell Cardiol 28:2511–2522

    Article  PubMed  CAS  Google Scholar 

  18. Takimoto K, Li D, Hershman KM et al (1997) Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats. Circ Res 81:533–539

    Article  PubMed  CAS  Google Scholar 

  19. Bril A, Forest MC, Gout B (1991) Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol 261:H301–H307

    PubMed  CAS  Google Scholar 

  20. Gidh-Jain M, Huang B, Jain P, el Sherif N (1996) Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ Res 79:669–675

    Article  PubMed  CAS  Google Scholar 

  21. Qin D, Zhang ZH, Caref EB et al (1996) Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res 79:461–473

    Article  PubMed  CAS  Google Scholar 

  22. Gao Z, Barth AS, DiSilvestre D et al (2008) Key pathways associated with heart failure development revealed by gene networks correlated with cardiac remodeling. Physiol Genomics 35:222–230

    Article  PubMed  CAS  Google Scholar 

  23. Kaab S, Nuss HB, Chiamvimonvat N et al (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273

    Article  PubMed  CAS  Google Scholar 

  24. Rozanski GJ, Xu Z, Whitney RT et al (1997) Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. J Mol Cell Cardiol 29:721–732

    Article  PubMed  CAS  Google Scholar 

  25. Knollmann BC, Knollmann Ritschel BE, Weissman NJ et al (2000) Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J Physiol 525(Pt 2):483–498

    Article  PubMed  CAS  Google Scholar 

  26. Ripplinger CM, Li W, Hadley J et al (2007) Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 101:1049–1057

    Article  PubMed  CAS  Google Scholar 

  27. Ruan H, Mitchell S, Vainoriene M et al (2007) Gi alpha 1-mediated cardiac electrophysiological remodeling and arrhythmia in hypertrophic cardiomyopathy. Circulation 116:596–605

    Article  PubMed  CAS  Google Scholar 

  28. Xu XP, Best PM (1991) Decreased transient outward K+ current in ventricular myocytes from acromegalic rats. Am J Physiol 260:H935–H942

    PubMed  CAS  Google Scholar 

  29. Sasano T, Kelemen K, Greener ID, Donahue JK (2009) Ventricular tachycardia from the healed myocardial infarction scar: validation of an animal model and utility of gene therapy. Heart Rhythm 6:S91–S97

    Article  PubMed  Google Scholar 

  30. Sasano T, McDonald AD, Kikuchi K, Donahue JK (2006) Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med 12:1256–1258

    Article  PubMed  CAS  Google Scholar 

  31. Furukawa T, Kimura S, Furukawa N et al (1992) Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 70:91–103

    Article  PubMed  CAS  Google Scholar 

  32. Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62:116–126

    Article  PubMed  CAS  Google Scholar 

  33. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    Article  PubMed  CAS  Google Scholar 

  34. Sicouri S, Antzelevitch C (1995) Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 6:591–603

    Article  PubMed  CAS  Google Scholar 

  35. Shipsey SJ, Bryant SM, Hart G (1997) Effects of hypertrophy on regional action potential characteristics in the rat left ventricle: a cellular basis for T-wave inversion? Circulation 96:2061–2068

    Article  PubMed  CAS  Google Scholar 

  36. Atiga WL, Fananapazir L, McAreavey D et al (2000) Temporal repolarization lability in hypertrophic cardiomyopathy caused by beta-myosin heavy-chain gene mutations. Circulation 101:1237–1242

    Article  PubMed  CAS  Google Scholar 

  37. Barr CS, Naas A, Freeman M et al (1994) QT dispersion and sudden unexpected death in chronic heart failure. Lancet 343:327–329

    Article  PubMed  CAS  Google Scholar 

  38. Piccirillo G, Germano G, Quaglione R et al (2002) QT-interval variability and autonomic control in hypertensive subjects with left ventricular hypertrophy. Clin Sci (Lond) 102:363–371

    Article  Google Scholar 

  39. Hardziyenka M, Campian ME, Verkerk AO et al (2012) Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure. J Am Coll Cardiol 59:2193–2202

    Article  PubMed  CAS  Google Scholar 

  40. Bignolais O, Quang KL, Naud P et al (2011) Early ion-channel remodeling and arrhythmias precede hypertrophy in a mouse model of complete atrioventricular block. J Mol Cell Cardiol 51:713–721

    Article  PubMed  CAS  Google Scholar 

  41. Ramakers C, Vos MA, Doevendans PA et al (2003) Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of IKs in canine hypertrophied hearts. Cardiovasc Res 57:486–496

    Article  PubMed  CAS  Google Scholar 

  42. Tsuji Y, Opthof T, Yasui K et al (2002) Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block. Circulation 106:2012–2018

    Article  PubMed  Google Scholar 

  43. Volders PG, Sipido KR, Vos MA et al (1998) Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation 98:1136–1147

    Article  PubMed  CAS  Google Scholar 

  44. Meszaros J, Ryder KO, Hart G (1996) Transient outward current in catecholamine-induced cardiac hypertrophy in the rat. Am J Physiol 271:H2360–H2367

    PubMed  CAS  Google Scholar 

  45. Brahmajothi MV, Campbell DL, Rasmusson RL et al (1999) Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J Gen Physiol 113:581–600

    Article  PubMed  CAS  Google Scholar 

  46. Kaab S, Dixon J, Duc J et al (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393

    Article  PubMed  CAS  Google Scholar 

  47. Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1:460–468

    Article  PubMed  Google Scholar 

  48. Brooksby P, Levi AJ, Jones JV (1993) The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 11:611–622

    Article  PubMed  CAS  Google Scholar 

  49. Ten Eick RE, Zhang K, Harvey RD, Bassett AL (1993) Enhanced functional expression of transient outward current in hypertrophied feline myocytes. Cardiovasc Drugs Ther 7(Suppl 3):611–619

    Article  PubMed  Google Scholar 

  50. Guo W, Kamiya K, Hojo M et al (1998) Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. J Mol Cell Cardiol 30:1449–1455

    Article  PubMed  CAS  Google Scholar 

  51. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    Article  PubMed  CAS  Google Scholar 

  52. Kuo HC, Cheng CF, Clark RB et al (2001) A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of Ito and confers susceptibility to ventricular tachycardia. Cell 107:801–813

    Article  PubMed  CAS  Google Scholar 

  53. Jia Y, Takimoto K (2006) Mitogen-activated protein kinases control cardiac KChIP2 gene expression. Circ Res 98:386–393

    Article  PubMed  CAS  Google Scholar 

  54. Panama BK, Latour-Villamil D, Farman GP et al (2011) Nuclear factor kappaB downregulates the transient outward potassium current Ito, f through control of KChIP2 expression. Circ Res 108:537–543

    Article  PubMed  CAS  Google Scholar 

  55. Capuano V, Ruchon Y, Antoine S et al (2002) Ventricular hypertrophy induced by mineralocorticoid treatment or aortic stenosis differentially regulates the expression of cardiac K+ channels in the rat. Mol Cell Biochem 237:1–10

    Article  PubMed  CAS  Google Scholar 

  56. Bodi I, Muth JN, Hahn HS et al (2003) Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure: complex nature of K+ current changes and action potential duration. J Am Coll Cardiol 41:1611–1622

    Article  PubMed  CAS  Google Scholar 

  57. Xu H, Dixon JE, Barry DM et al (1996) Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol 108:405–419

    Article  PubMed  CAS  Google Scholar 

  58. Li GR, Lau CP, Ducharme A et al (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283:H1031–H1041

    PubMed  CAS  Google Scholar 

  59. Heath BM, Xia J, Dong E et al (1998) Overexpression of nerve growth factor in the heart alters ion channel activity and beta-adrenergic signalling in an adult transgenic mouse. J Physiol 512(Pt 3):779–791

    Article  PubMed  CAS  Google Scholar 

  60. Matsubara H, Suzuki J, Inada M (1993) Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy. J Clin Invest 92:1659–1666

    Article  PubMed  CAS  Google Scholar 

  61. Ojamaa K, Kenessey A, Shenoy R, Klein I (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279:E1319–E1324

    PubMed  CAS  Google Scholar 

  62. Abe A, Yamamoto T, Isome M et al (1998) Thyroid hormone regulates expression of shaker-related potassium channel mRNA in rat heart. Biochem Biophys Res Commun 245:226–230

    Article  PubMed  CAS  Google Scholar 

  63. Li H, Guo W, Mellor RL, Nerbonne JM (2005) KChIP2 modulates the cell surface expression of Kv 1.5-encoded K+ channels. J Mol Cell Cardiol 39:121–132

    Article  PubMed  Google Scholar 

  64. Feng J, Wible B, Li GR et al (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–579

    Article  PubMed  CAS  Google Scholar 

  65. Van Wagoner DR, Pond AL, McCarthy PM et al (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 80:772–781

    Article  PubMed  Google Scholar 

  66. Fernandez-Velasco M, Ruiz-Hurtado G, Delgado C (2006) IK1 and If in ventricular myocytes isolated from control and hypertrophied rat hearts. Pflugers Arch 452:146–154

    Article  PubMed  CAS  Google Scholar 

  67. Fedida D, Giles WR (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 442:191–209

    PubMed  CAS  Google Scholar 

  68. Furukawa T, Myerburg RJ, Furukawa N et al (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 67:1287–1291

    Article  PubMed  CAS  Google Scholar 

  69. Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75:473–482

    Article  PubMed  CAS  Google Scholar 

  70. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93:168–177

    Article  PubMed  CAS  Google Scholar 

  71. Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42:391–401

    Article  PubMed  CAS  Google Scholar 

  72. Rozanski GJ, Xu Z, Zhang K, Patel KP (1998) Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol 274:H259–H265

    PubMed  CAS  Google Scholar 

  73. Cheng J, Kamiya K, Liu W et al (1999) Heterogeneous distribution of the two components of delayed rectifier K+ current: a potential mechanism of the proarrhythmic effects of methanesulfonanilideclass III agents. Cardiovasc Res 43:135–147

    Article  PubMed  CAS  Google Scholar 

  74. Kaprielian R, Sah R, Nguyen T et al (2002) Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K+ currents, and [Ca2+]i transients. Am J Physiol Heart Circ Physiol 283:H1157–H1168

    PubMed  CAS  Google Scholar 

  75. Perrier E, Perrier R, Richard S, Benitah JP (2004) Ca2+ controls functional expression of the cardiac K+ transient outward current via the calcineurin pathway. J Biol Chem 279:40634–40639

    Article  PubMed  CAS  Google Scholar 

  76. Lebeche D, Kaprielian R, Hajjar R (2006) Modulation of action potential duration on myocyte hypertrophic pathways. J Mol Cell Cardiol 40:725–735

    Article  PubMed  CAS  Google Scholar 

  77. Dong D, Duan Y, Guo J et al (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovasc Res 57:320–332

    Article  PubMed  CAS  Google Scholar 

  78. Rossow CF, Dilly KW, Yuan C et al (2009) NFATc3-dependent loss of Ito gradient across the left ventricular wall during chronic beta adrenergic stimulation. J Mol Cell Cardiol 46:249–256

    Article  PubMed  CAS  Google Scholar 

  79. Xiao L, Coutu P, Villeneuve LR et al (2008) Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 103:733–742

    Article  PubMed  CAS  Google Scholar 

  80. Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  81. Liu HB, Yang BF, Dong DL (2010) Calcineurin and electrical remodeling in pathologic ­cardiac hypertrophy. Trends Cardiovasc Med 20:148–153

    Article  PubMed  CAS  Google Scholar 

  82. Hill JA (2003) Electrical remodeling in cardiac hypertrophy. Trends Cardiovasc Med 13:316–322

    Article  PubMed  CAS  Google Scholar 

  83. Deng L, Huang B, Qin D et al (2001) Calcineurin inhibition ameliorates structural, contractile, and electrophysiologic consequences of postinfarction remodeling. J Cardiovasc Electrophysiol 12:1055–1061

    Article  PubMed  CAS  Google Scholar 

  84. Gong N, Bodi I, Zobel C et al (2006) Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281:38498–38506

    Article  PubMed  CAS  Google Scholar 

  85. Sah R, Oudit GY, Nguyen TT et al (2002) Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in Kv4.2N transgenic mice. Circulation 105:1850–1856

    Article  PubMed  CAS  Google Scholar 

  86. Lebeche D, Kaprielian R, del Monte F et al (2004) In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 110:3435–3443

    Article  PubMed  CAS  Google Scholar 

  87. Kassiri Z, Zobel C, Nguyen TT et al (2002) Reduction of Ito causes hypertrophy in neonatal rat ventricular myocytes. Circ Res 90:578–585

    Article  PubMed  CAS  Google Scholar 

  88. Morin S, Charron F, Robitaille L, Nemer M (2000) GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 19:2046–2055

    Article  PubMed  CAS  Google Scholar 

  89. Rossow CF, Minami E, Chase EG et al (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94:1340–1350

    Article  PubMed  CAS  Google Scholar 

  90. Dilly KW, Rossow CF, Votaw VS et al (2006) Mechanisms underlying variations in excitation-contraction coupling across the mouse left ventricular free wall. J Physiol 572:227–241

    PubMed  CAS  Google Scholar 

  91. Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the Ito transmural gradient in the mouse heart. Circ Res 98:1306–1313

    Article  PubMed  CAS  Google Scholar 

  92. Zhang TT, Takimoto K, Stewart AF et al (2001) Independent regulation of cardiac Kv4.3 potassium channel expression by angiotensin II and phenylephrine. Circ Res 88:476–482

    Article  PubMed  CAS  Google Scholar 

  93. Zhou C, Ziegler C, Birder LA et al (2006) Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98:1040–1047

    Article  PubMed  CAS  Google Scholar 

  94. Li X, Li S, Xu Z et al (2006) Redox control of K+ channel remodeling in rat ventricle. J Mol Cell Cardiol 40:339–349

    Article  PubMed  Google Scholar 

  95. Flescher E, Tripoli H, Salnikow K, Burns FJ (1998) Oxidative stress suppresses transcription factor activities in stimulated lymphocytes. Clin Exp Immunol 112:242–247

    Article  PubMed  CAS  Google Scholar 

  96. El-Haou S, Balse E, Neyroud N et al (2009) Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 104:758–769

    Article  PubMed  CAS  Google Scholar 

  97. Kuwahara K, Nakao K (2010) New molecular mechanisms for cardiovascular disease:transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci 116:337–342

    Article  Google Scholar 

  98. Wasson S, Reddy HK, Dohrmann ML (2004) Current perspectives of electrical remodeling and its therapeutic implications. J Cardiovasc Pharmacol Ther 9:129–144

    Article  PubMed  CAS  Google Scholar 

  99. Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (Ito) expression and regulation. J Mol Cell Cardiol 48:12–25

    Article  PubMed  CAS  Google Scholar 

  100. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Kurokawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sasano, T., Kurokawa, J. (2013). Remodeling of Potassium Channels in Cardiac Hypertrophy. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_2

Download citation

Publish with us

Policies and ethics