Skip to main content

Negative Regulators of Inflammation as Endogenous Protective Mechanisms in Postinfarction Remodeling

  • Chapter
  • First Online:
  • 1910 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

Myocardial infarction triggers an intense inflammatory reaction that serves to clear the wound from dead cells and matrix debris while promoting cardiac repair and formation of a scar. Dysregulated inflammation following cardiac injury has adverse consequences on the reparative response enhancing dilative remodeling and causing contractile dysfunction. Inhibitory molecular signals and suppressive pathways that prevent excessive or uncontrolled inflammation are activated in the infarcted myocardium and may protect from the development of adverse remodeling. This chapter discusses the cellular effectors and molecular signals responsible for suppression and containment of the postinfarction inflammatory response. Neutrophils, monocytes/macrophage, and lymphocyte subpopulations with suppressive properties, dendritic cells, vascular cells, fibroblasts, and extracellular matrix proteins contribute to inhibition of the inflammatory signals by producing soluble suppressive mediators (such as transforming growth factor-β, interleukin-10, and lipid-derived mediators) and through activation of intracellular inhibitory signals. We propose that dilative remodeling in patients with myocardial infarction may reflect impairment of suppressive anti-inflammatory pathways. Selective inhibition of inflammatory mediators in patient subpopulations with overactive postinfarction inflammation may protect from the development of heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Velagaleti RS, Vasan RS (2007) Heart failure in the twenty-first century: is it a coronary artery disease or hypertension problem? Cardiol Clin 25:487–495, v

    Article  PubMed  Google Scholar 

  2. Lewis EF, Moye LA, Rouleau JL et al (2003) Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol 42:1446–1453

    Article  PubMed  Google Scholar 

  3. White HD, Norris RM, Brown MA et al (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    Article  PubMed  CAS  Google Scholar 

  4. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111

    Article  PubMed  CAS  Google Scholar 

  5. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  PubMed  CAS  Google Scholar 

  6. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145

    Article  PubMed  CAS  Google Scholar 

  7. Oyama J, Blais C Jr, Liu X et al (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109:784–789

    Article  PubMed  CAS  Google Scholar 

  8. Arslan F, Smeets MB, O’Neill LA et al (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121:80–90

    Article  PubMed  CAS  Google Scholar 

  9. Riad A, Jager S, Sobirey M et al (2008) Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol 180:6954–6961

    PubMed  CAS  Google Scholar 

  10. Andrassy M, Volz HC, Igwe JC et al (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117:3216–3226

    Article  PubMed  CAS  Google Scholar 

  11. Rossen RD, Michael LH, Kagiyama A et al (1988) Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circ Res 62:572–584

    Article  PubMed  CAS  Google Scholar 

  12. O’Neill LA (2008) When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29:12–20

    Article  PubMed  Google Scholar 

  13. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  14. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  15. Cook SA, Novikov MS, Ahn Y, Matsui T, Rosenzweig A (2003) A20 is dynamically regulated in the heart and inhibits the hypertrophic response. Circulation 108:664–667

    Article  PubMed  Google Scholar 

  16. Li HL, Zhuo ML, Wang D et al (2007) Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115:1885–1894

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi K, Hernandez LD, Galan JE et al (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202

    Article  PubMed  CAS  Google Scholar 

  18. Seki M, Kohno S, Newstead MW et al (2010) Critical role of IL-1 receptor-associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza pneumonia. J Immunol 184:1410–1418

    Article  PubMed  CAS  Google Scholar 

  19. Flannery S, Bowie AG (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 80:1981–1991

    Article  PubMed  CAS  Google Scholar 

  20. Burns K, Janssens S, Brissoni B et al (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197:263–268

    Article  PubMed  Google Scholar 

  21. Meylan E, Burns K, Hofmann K et al (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507

    Article  PubMed  CAS  Google Scholar 

  22. Stancovski I, Baltimore D (1997) NF-kappaB activation: the I kappaB kinase revealed? Cell 91:299–302

    Article  PubMed  CAS  Google Scholar 

  23. Lenardo MJ, Baltimore D (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229

    Article  PubMed  CAS  Google Scholar 

  24. Bujak M, Dobaczewski M, Chatila K et al (2008) Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173:57–67

    Article  PubMed  Google Scholar 

  25. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  PubMed  CAS  Google Scholar 

  26. Kawaguchi M, Takahashi M, Hata T et al (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604

    Article  PubMed  CAS  Google Scholar 

  27. Mezzaroma E, Toldo S, Farkas D et al (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108:19725–19730

    Article  PubMed  CAS  Google Scholar 

  28. Frangogiannis NG, Lindsey ML, Michael LH et al (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    Article  PubMed  CAS  Google Scholar 

  29. Sun M, Dawood F, Wen WH et al (2004) Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 110:3221–3228

    Article  PubMed  CAS  Google Scholar 

  30. Kurrelmeyer KM, Michael LH, Baumgarten G et al (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 97:5456–5461

    Article  PubMed  CAS  Google Scholar 

  31. Monden Y, Kubota T, Inoue T et al (2007) Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293:H743–H753

    Article  PubMed  CAS  Google Scholar 

  32. Frangogiannis NG (2007) Chemokines in ischemia and reperfusion. Thromb Haemost 97:738–747

    PubMed  CAS  Google Scholar 

  33. Dewald O, Zymek P, Winkelmann K et al (2005) CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881–889

    Article  PubMed  CAS  Google Scholar 

  34. Dewald O, Ren G, Duerr GD et al (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki K, Murtuza B, Smolenski RT et al (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104:I308–I313

    Article  PubMed  CAS  Google Scholar 

  36. Naka T, Fujimoto M, Tsutsui H, Yoshimura A (2005) Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol 87:61–122

    Article  PubMed  CAS  Google Scholar 

  37. Frangogiannis NG, Mendoza LH, Lewallen M et al (2001) Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J 15:1428–1430

    PubMed  CAS  Google Scholar 

  38. Mortier A, Gouwy M, Van Damme J, Proost P (2011) Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 317:642–654

    Article  PubMed  CAS  Google Scholar 

  39. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918

    Article  PubMed  CAS  Google Scholar 

  40. Li MO, Flavell RA (2008) Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 28:468–476

    Article  PubMed  Google Scholar 

  41. Frangogiannis NG, Mendoza LH, Lindsey ML et al (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165:2798–2808

    PubMed  CAS  Google Scholar 

  42. Curato C, Slavic S, Dong J et al (2010) Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol 185:6286–6293

    Article  PubMed  CAS  Google Scholar 

  43. Yang Z, Zingarelli B, Szabo C (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101:1019–1026

    Article  PubMed  CAS  Google Scholar 

  44. Zymek P, Nah DY, Bujak M et al (2007) Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74:313–322

    Article  PubMed  CAS  Google Scholar 

  45. Kitamura M (1997) Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-beta 1. J Immunol 159:1404–1411

    PubMed  CAS  Google Scholar 

  46. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  PubMed  CAS  Google Scholar 

  47. Mauviel A (2005) Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med 117:69–80

    PubMed  CAS  Google Scholar 

  48. Schiller M, Javelaud D, Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35:83–92

    Article  PubMed  CAS  Google Scholar 

  49. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  50. Thompson NL, Bazoberry F, Speir EH et al (1988) Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors 1:91–99

    Article  PubMed  CAS  Google Scholar 

  51. Dean RG, Balding LC, Candido R et al (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256

    Article  PubMed  CAS  Google Scholar 

  52. Bujak M, Ren G, Kweon HJ et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138

    Article  PubMed  CAS  Google Scholar 

  53. Ikeuchi M, Tsutsui H, Shiomi T et al (2004) Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64:526–535

    Article  PubMed  CAS  Google Scholar 

  54. Okada H, Takemura G, Kosai K et al (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111:2430–2437

    Article  PubMed  CAS  Google Scholar 

  55. Dobaczewski M, Bujak M, Li N et al (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428

    Article  PubMed  CAS  Google Scholar 

  56. Kempf T, Eden M, Strelau J et al (2006) The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360

    Article  PubMed  CAS  Google Scholar 

  57. Kempf T, Zarbock A, Widera C et al (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588

    Article  PubMed  CAS  Google Scholar 

  58. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000

    Article  PubMed  CAS  Google Scholar 

  59. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177:1576–1591

    Article  PubMed  CAS  Google Scholar 

  60. Keyes KT, Ye Y, Lin Y et al (2010) Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol 299:H153–H164

    Article  PubMed  CAS  Google Scholar 

  61. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  PubMed  CAS  Google Scholar 

  62. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–50

    PubMed  CAS  Google Scholar 

  63. Devitt A, Marshall LJ (2011) The innate immune system and the clearance of apoptotic cells. J Leukoc Biol 90(3):447–457

    Article  PubMed  CAS  Google Scholar 

  64. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  PubMed  CAS  Google Scholar 

  65. Robbins CS, Swirski FK (2010) The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol Life Sci 67:2685–2693

    Article  PubMed  CAS  Google Scholar 

  66. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  PubMed  CAS  Google Scholar 

  67. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  PubMed  CAS  Google Scholar 

  68. Tsujioka H, Imanishi T, Ikejima H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138

    Article  PubMed  Google Scholar 

  69. Frangogiannis NG, Mendoza LH, Ren G et al (2003) MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol 285:H483–H492

    PubMed  CAS  Google Scholar 

  70. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–858

    Article  PubMed  CAS  Google Scholar 

  71. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176:2177–2187

    Article  PubMed  CAS  Google Scholar 

  72. Anzai A, Anzai T, Nagai S et al (2012) Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125:1234–1245

    Article  PubMed  Google Scholar 

  73. Li J, Brown LF, Hibberd MG et al (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811

    PubMed  CAS  Google Scholar 

  74. Ren G, Michael LH, Entman ML, Frangogiannis NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50:71–79

    Article  PubMed  CAS  Google Scholar 

  75. Zymek P, Bujak M, Chatila K et al (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    Article  PubMed  CAS  Google Scholar 

  76. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    Article  PubMed  CAS  Google Scholar 

  77. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    Article  PubMed  CAS  Google Scholar 

  78. Teder P, Vandivier RW, Jiang D et al (2002) Resolution of lung inflammation by CD44. Science 296:155–158

    Article  PubMed  CAS  Google Scholar 

  79. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  PubMed  CAS  Google Scholar 

  80. Frangogiannis NG, Ren G, Dewald O et al (2005) The critical role of endogenous Thrombospondin (TSP)-1 in preventing expansion of healing myocardial infarcts. Circulation 111:2935–2942

    Article  PubMed  CAS  Google Scholar 

  81. Entman ML, Michael L, Rossen RD et al (1991) Inflammation in the course of early myocardial ischemia. FASEB J 5:2529–2537

    PubMed  CAS  Google Scholar 

  82. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F (2002) The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol 40:1199–1204

    Article  PubMed  CAS  Google Scholar 

  83. Armstrong PW, Granger CB, Adams PX et al (2007) Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297:43–51

    Article  PubMed  CAS  Google Scholar 

  84. Briaud SA, Ding ZM, Michael LH et al (2001) Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am J Physiol Heart Circ Physiol 280:H60–H67

    PubMed  CAS  Google Scholar 

  85. Abbate A, Kontos MC, Grizzard JD et al (2010) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 105:1371–1377 e1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Frangogiannis’ laboratory is supported by R01 HL76246, R01HL85440, the Wilf Family Cardiovascular Research Institute, and the Edmond J. Safra/Republic National Bank of New York Chair in Cardiovascular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saxena, A., Frangogiannis, N.G. (2013). Negative Regulators of Inflammation as Endogenous Protective Mechanisms in Postinfarction Remodeling. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_18

Download citation

Publish with us

Policies and ethics