Skip to main content

CD133-Positive Cells for Cardiac Stem Cell Therapy: Current Status and Outlook

  • Chapter
  • First Online:
Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 777))

Abstract

Ischemic heart disease represents one major cause of death in developed countries. Ten years ago, cardiac application of bone marrow-derived progenitor cells was introduced as a new therapeutic strategy with the aim of restoring the function of ischemic myocardium. Among other cell populations, CD133+ bone marrow stem cells form a major subpopulation of progenitor cells studied in this context. Following promising preclinical evidence, both cardiac surgeons and interventional cardiologists have applied CD133+ cells in setting of chronic ischemic heart failure as well as acute myocardial infarction within phase I and II clinical trials. This chapter summarizes the rationale for the use of this stem cell subpopulation in the field of regenerative cardiac therapy strategies and gives an overview on the current clinical evidence as well as upcoming phase III trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  2. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421

    Article  PubMed  CAS  Google Scholar 

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  4. Donndorf P, Strauer BE, Steinhoff G (2012) Update on cardiac stem cell therapy in heart failure. Curr Opin Cardiol 27:154–160

    Article  PubMed  Google Scholar 

  5. Strauer BE, Yousef M, Schannwell CM (2012) The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 12:721–729

    Article  Google Scholar 

  6. Stamm C, Kleine HD, Choi YH, Dunkelmann S, Lauffs JA, Lorenzen B et al (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133:717–725

    Article  PubMed  Google Scholar 

  7. Allgöwer M (1956) The cellular basis of wound repair. Charles C. Thomas. Oxford Blackwell, Springfield, III

    Google Scholar 

  8. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  9. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  10. Quaini F, Urbanek K, Graiani G, Lagrasta C, Maestri R, Monica M et al (2004) The regenerative potential of the human heart. Int J Cardiol 95:S26–S28

    Article  PubMed  Google Scholar 

  11. Goodell MA, Jackson KA, Majka SM, Mi T, Wang H, Pocius J et al (2001) Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci 938:208–218, discussion 18–20

    Article  PubMed  CAS  Google Scholar 

  12. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  13. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  14. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  15. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  PubMed  CAS  Google Scholar 

  16. Hock H (2010) Some hematopoietic stem cells are more equal than others. J Exp Med 207:1127–1130

    Article  PubMed  CAS  Google Scholar 

  17. Tse HF, Yiu KH, Lau CP (2007) Bone marrow stem cell therapy for myocardial angiogenesis. Curr Vasc Pharmacol 5:103–112

    Article  PubMed  CAS  Google Scholar 

  18. Ma N, Ladilov Y, Kaminski A, Piechaczek C, Choi YH, Li W et al (2006) Umbilical cord blood cell transplantation for myocardial regeneration. Transplant Proc 38:771–773

    Article  PubMed  CAS  Google Scholar 

  19. Ma N, Ladilov Y, Moebius JM, Ong L, Piechaczek C, David A et al (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169

    Article  PubMed  CAS  Google Scholar 

  20. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  21. Ong LL, Li W, Oldigs JK, Kaminski A, Gerstmayer B, Piechaczek C et al (2007) Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133+ cells. Tissue Eng Part C Methods 16:1069–1081

    Article  Google Scholar 

  22. Gao LR, Xu RY, Zhang NK, Chen Y, Wang ZG, Zhu ZM et al (2008) Increased apelin following bone marrow mononuclear cell transplantation contributes to the improvement of cardiac function in patients with severe heart failure. Cell Transplant 18:1311–1318

    Article  Google Scholar 

  23. Bonaros N, Rauf R, Werner E, Schlechta B, Rohde E, Kocher A et al (2008) Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact Cardiovasc Thorac Surg 7:249–255

    Article  PubMed  Google Scholar 

  24. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  25. Chachques JC (2009) Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther 7:911–919

    Article  PubMed  CAS  Google Scholar 

  26. Kaminski A, Steinhoff G (2008) Current status of intramyocardial bone marrow stem cell transplantation. Semin Thorac Cardiovasc Surg 20:119–125

    Article  PubMed  Google Scholar 

  27. Soeki T, Tamura Y, Shinohara H, Tanaka H, Bando K, Fukuda N (2000) Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93:168–174

    Article  PubMed  CAS  Google Scholar 

  28. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    Article  PubMed  Google Scholar 

  29. Menasche P (2011) Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol 50:258–265

    Article  PubMed  CAS  Google Scholar 

  30. Larose E, Proulx G, Voisine P, Rodes-Cabau J, De Larochelliere R, Rossignol G et al (2010) Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: an in vivo cardiovascular magnetic resonance study. Catheter Cardiovasc Interv 75:120–127

    PubMed  Google Scholar 

  31. Hu S, Liu S, Zheng Z, Yuan X, Li L, Lu M et al (2011) Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 57:2409–2415

    Article  PubMed  Google Scholar 

  32. Zhao Q, Sun Y, Xia L, Chen A, Wang Z (2008) Randomized study of mononuclear bone marrow cell transplantation in patients with coronary surgery. Ann Thorac Surg 86:1833–1840

    Article  PubMed  Google Scholar 

  33. Hendrikx M, Hensen K, Clijsters C, Jongen H, Koninckx R, Bijnens E et al (2006) Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 114:I101–I107

    Article  PubMed  Google Scholar 

  34. Patel AN, Geffner L, Vina RF, Saslavsky J, Urschel HC Jr, Kormos R et al (2005) Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 130:1631–1638

    Article  PubMed  Google Scholar 

  35. Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F et al (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 151:192–197

    Article  PubMed  Google Scholar 

  36. Ahmadi H, Baharvand H, Ashtiani SK, Soleimani M, Sadeghian H, Ardekani JM et al (2007) Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Curr Neurovasc Res 4:153–160

    Article  PubMed  Google Scholar 

  37. Klein HM, Ghodsizad A, Marktanner R, Poll L, Voelkel T, Mohammad Hasani MR et al (2007) Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg Forum 10:E66–E69

    Article  PubMed  CAS  Google Scholar 

  38. Donndorf P, Kundt G, Kaminski A, Yerebakan C, Liebold A, Steinhoff G et al (2011) Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis. J Thorac Cardiovasc Surg 142:911–920

    Article  PubMed  Google Scholar 

  39. Yerebakan C, Kaminski A, Westphal B, Donndorf P, Glass A, Liebold A et al (2011) Impact of preoperative left ventricular function and time from infarction on the long-term benefits after intramyocardial CD133(+) bone marrow stem cell transplant. J Thorac Cardiovasc Surg 142:1530–9.e3

    Article  PubMed  Google Scholar 

  40. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  41. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  42. Lipinski MJ, Biondi-Zoccai GG, Abbate A, Khianey R, Sheiban I, Bartunek J et al (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50:1761–1767

    Article  PubMed  Google Scholar 

  43. Mansour S, Roy DC, Bouchard V, Nguyen BK, Stevens LM, Gobeil F et al (2010) COMPARE-AMI trial: comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular dysfunction: study rationale and design. J Cardiovasc Transl Res 3:153–159

    Article  PubMed  Google Scholar 

  44. Nasseri BA, Kukucka M, Dandel M, Knosalla C, Choi YH, Ebell W et al (2009) Two-dimensional speckle tracking strain analysis for efficacy assessment of myocardial cell therapy. Cell transplant 18:361–370

    Article  PubMed  Google Scholar 

  45. Pompillio G, Steinhoff G, Liebold A, Pesce M, Alemanni F, Capogrossi MC et al (2008) Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thorac Cardiovasc Surg 56:71–76

    Article  Google Scholar 

  46. Bartunek J, Vanderheyden M, Vanderkerckhove B, Mansour S, De Bryne B, de Bondt P et al (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112:I178–I183

    PubMed  Google Scholar 

  47. Manginas A, Goussetis E, Koutelou M, Karatasakis G, Peristeri I, Theodorakos A et al (2007) Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheter Cardiovasc Interv 69:773–781

    Article  PubMed  Google Scholar 

  48. Colombo A, Castellani M, Piccaluga E, Pusineri E, Palatresi S, Longari V et al (2011) Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J Cardiovasc Med 12:239–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Donndorf M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Donndorf, P., Steinhoff, G. (2013). CD133-Positive Cells for Cardiac Stem Cell Therapy: Current Status and Outlook. In: Corbeil, D. (eds) Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology. Advances in Experimental Medicine and Biology, vol 777. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5894-4_14

Download citation

Publish with us

Policies and ethics